AMCS/MATH 608

Problem set 11 due December 16, 2014
Dr. Epstein

Reading: There are many excellent references for this material; I especially like Real Analysis by Elias Stein and Rami Shakarchi.
Standard problems: The solutions to the following problems do not need to be handed in.

1. Suppose that f is a non-negative integable function, and define $E_{\alpha}=\{x: f(x) \geq$ $\alpha\}$. Prove that

$$
\begin{equation*}
m\left(E_{\alpha}\right) \leq \frac{1}{\alpha} \int f(x) d m(x) \tag{1}
\end{equation*}
$$

This is Chebyshev's Inequality, which is quite important in Probability Theory.
2. Given a collection of sets $\left\{F_{1}, \ldots, F_{m}\right\}$ show that there is a collection of disjoint sets $\left\{F_{1}^{*}, \ldots, F_{N}^{*}\right\}$, so that $N \leq 2^{m}-1$, and for every k we have that

$$
\begin{equation*}
F_{k}=\bigcup_{F_{j}^{*} \subset F_{k}} F_{j}^{*} \tag{2}
\end{equation*}
$$

3. Suppose that f is an integrable function on \mathbb{R}^{d}, and that for every measurable set E we know that

$$
\begin{equation*}
\int_{E} f(x) d x \geq 0 \tag{3}
\end{equation*}
$$

Prove that $f(x) \geq 0$ for almost every x.
Homework assignment: The solutions to the following problems should be carefully written up and handed in.

1. The integrability of a function on \mathbb{R} does not imply that it tends to zero at infinity.
(a) Construct a positive continuous function on \mathbb{R} so that f is integrable on \mathbb{R}, but $\limsup _{x \rightarrow \infty} f(x)=\infty$.
(b) If f is integrable and uniformly continous on \mathbb{R}, then show that $\lim _{x \rightarrow \pm \infty} f(x)=$ 0.
2. Suppose that f is integrable on \mathbb{R}. Show that

$$
\begin{equation*}
g(x)=\int_{-\infty}^{x} f(y) d y \tag{4}
\end{equation*}
$$

is uniformly continuous.
3. Suppose that f is a non-negative measurable function, and for each $k \in \mathbb{Z}$ define the sets:

$$
\begin{equation*}
E_{k}=\left\{x: f(x)>2^{k}\right\} \text { and } F_{k}=\left\{x: 2^{k}<f(x) \leq 2^{k+1}\right\} \tag{5}
\end{equation*}
$$

Show that the sets $\left\{F_{k}\right\}$ are pairwise disjoint and that if f is finite a.e., then

$$
\begin{equation*}
\{x: f(x)>0\}=\bigcup_{k=-\infty}^{\infty} F_{k} \tag{6}
\end{equation*}
$$

Prove that f is is integrable if and only if

$$
\begin{equation*}
\sum_{k=-\infty}^{\infty} 2^{k} m\left(F_{k}\right)<\infty \text { if and only if } \sum_{k=-\infty}^{\infty} 2^{k} m\left(E_{k}\right)<\infty \tag{7}
\end{equation*}
$$

For $a \in \mathbb{R}$ define the functions on \mathbb{R}^{d} by

$$
\begin{align*}
& f_{a}(x)=\left\{\begin{array}{l}
|x|^{-a} \text { if }|x| \leq 1 \\
0 \text { if }|x|>1
\end{array}\right. \tag{8}\\
& g_{a}(x)=\left\{\begin{array}{l}
|x|^{-a} \text { if }|x| \geq 1 \\
0 \text { if }|x|<1
\end{array}\right. \tag{9}
\end{align*}
$$

Using the second part of the problem show that f_{a} is integrable in \mathbb{R}^{d} if and only if $a<d$, while g_{a} is integrable in \mathbb{R}^{d} if and only if $a>d$.
4. Define a function on \mathbb{R} by setting

$$
f(x)=\left\{\begin{array}{l}
x^{-\frac{1}{2}} \text { if } 0<x<1 \tag{10}\\
0 \text { otherwise }
\end{array}\right.
$$

Let $\left\{r_{n}\right\}$ be an enumeration of the rational numbers, \mathbb{Q}, and define

$$
\begin{equation*}
F(x)=\sum_{n=1}^{\infty} 2^{-n} f\left(x-r_{n}\right) \tag{11}
\end{equation*}
$$

Prove that F is integrable over \mathbb{R}, hence the series defining $F(x)$ converges for a.e. x. However, show that this series is unbounded on every interval, and that any function that agrees with F a.e. is as well.
5. Let f be a bounded, non-decreasing function defined on [0, 1], that is, if $x<y$, then $f(x) \leq f(y)$. Show that f is Riemann integrable.
6. Suppose that $0 \leq f$ is integrable over \mathbb{R}^{d}. For each $\alpha>0$ define

$$
\begin{equation*}
E_{\alpha}=\{x: f(x)>\alpha\} . \tag{12}
\end{equation*}
$$

Prove that

$$
\begin{equation*}
\int_{\mathbb{R}^{d}} f(x) d x=\int_{0}^{\infty} m\left(E_{\alpha}\right) d \alpha . \tag{13}
\end{equation*}
$$

Hint: Think of the right hand side as a Riemann integral, in particular, show that $\alpha \mapsto m\left(E_{\alpha}\right)$ is Riemann integrable.

