AMCS 608
 Problem set 1 due September 16, 2014
 Dr. Epstein

Reading: There are many excellent references for this material; several I especially like are Complex Analysis by Elias Stein and Rami Shakarchi, Complex Analysis by Lars V. Ahlfors, and Conformal Mapping by Zeev Nehari.

Standard problems: The following problems should be done, but do not have to be handed in.

1. We can define polar coordinates in the complex plane by setting

$$
\begin{equation*}
x=r \cos \theta \quad y=r \sin \theta \tag{1}
\end{equation*}
$$

Show that in polar coordinates the Cauchy-Riemann equations take the form

$$
\begin{equation*}
\frac{\partial u}{\partial r}=\frac{1}{r} \frac{\partial v}{\partial \theta} \quad \frac{1}{r} \frac{\partial u}{\partial \theta}=-\frac{\partial v}{\partial r} . \tag{2}
\end{equation*}
$$

2. Let $f(x, y)=\sqrt{|x||y|}$, for all $(x, y) \in \mathbb{R}^{2}$. Show that f satisfies the CauchyRiemann equation at $(0,0)$, but does not have a complex derivative at this point.
3. Prove the following:
(a) The power series $\sum_{n=1}^{\infty} n z^{n}$ converges for any z with $|z|<1$, but does not converge for any point where $|z|=1$.
(b) The power series $\sum_{n=1}^{\infty} z^{n} / n^{2}$ converges for any z with $|z| \leq 1$.
(c) The power series $\sum_{n=1}^{\infty} z^{n} / n$ converges for any z with $|z| \leq 1$, except $z=1$.
4. Let $a, b, c \in \mathbb{C}$ under what conditions does the equation

$$
\begin{equation*}
a z+b \bar{z}+c=0 \tag{3}
\end{equation*}
$$

have a unique solution? When does this equation define a line in the complex plane?

Homework assignment: The solutions to the following problems should be carefully written up and handed in.

1. Show that if f is analytic in $B_{R}(0)$ and $\operatorname{Re} f$, or $\operatorname{Im} f$ is a constant, then f is constant.
2. Suppose that g is an analytic function defined in $U \subset \mathbb{C}$ and f is an analytic function defined in an open set containing $g(U)$. Show that $f \circ g$ is an analytic function, using just the definition of complex derivative. Show that the chain rule is valid:

$$
\begin{equation*}
(f \circ g)^{\prime}(w)=f^{\prime}(g(w)) g^{\prime}(w) . \tag{4}
\end{equation*}
$$

3. Verify the chain rule for complex coordinates, e.g. $z, \bar{z}, w, \bar{w}:$ Suppose that $f(z, \bar{z})$: $U \rightarrow V$ and $g(w, \bar{w}): V \rightarrow \mathbb{C}$, are differentiable in the real sense, i.e. as maps from subsets of \mathbb{R}^{2} to \mathbb{R}^{2}. As noted in class we can think of f and g as functions of the variables z, \bar{z}. If we define $h=g \circ f$, then show that

$$
\begin{equation*}
\frac{\partial h}{\partial z}=\frac{\partial g}{\partial w} \frac{\partial f}{\partial z}+\frac{\partial g}{\partial \bar{w}} \frac{\partial \bar{f}}{\partial z} ; \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial h}{\partial \bar{z}}=\frac{\partial g}{\partial w} \frac{\partial f}{\partial \bar{z}}+\frac{\partial g}{\partial \bar{w}} \frac{\partial \bar{f}}{\partial \bar{z}} . \tag{6}
\end{equation*}
$$

Recall that $\partial_{z}=\frac{1}{2}\left(\partial_{x}-i \partial_{y}\right)$ and $\partial_{\bar{z}}=\frac{1}{2}\left(\partial_{x}+i \partial_{y}\right)$. Let f be analytic in a neighborhood of z. Show that the real derivative of $f, D f(x, y): \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is invertible at $z=x+i y$ if and only if $f^{\prime}(z) \neq 0$.
4. Show that if f is a \mathscr{C}^{1}-function, then

$$
\begin{equation*}
d f=\partial_{z} f d z+\partial_{\bar{z}} f d \bar{z} \tag{7}
\end{equation*}
$$

Show that any one form α can be written in the form

$$
\begin{equation*}
\alpha=a d z+b d \bar{z} \tag{8}
\end{equation*}
$$

and that

$$
\begin{equation*}
d \alpha=\left(\partial_{z} b-\partial_{\bar{z}} a\right) d z \wedge d \bar{z} \tag{9}
\end{equation*}
$$

Show that the 1 -form $\alpha=a d z$ is closed $(d \alpha=0)$ if and only if a is an analytic function.
5. Suppose that f, defined in $D_{1}(0)$, is infinitely differentiable. Show that for each $n \in \mathbb{N}$ we have

$$
\begin{equation*}
f(z, \bar{z})=\sum_{0 \leq j+k \leq n} \frac{\partial_{z}^{j} \partial_{\bar{z}}^{k} f(0,0)}{j!k!} z^{j} \bar{z}^{k}+O\left(|z|^{n+1}\right) . \tag{10}
\end{equation*}
$$

6. If we define $\log z=\log r+i \theta$, at $z=r \cos \theta+i r \sin \theta$, then show that $\log z$ is an analytic function in the set

$$
\{z \in \mathbb{C}: r \neq 0 \text { and }-\pi<\theta<\pi\} .
$$

Sketch this set. Use this to prove that if f is analytic in $B_{R}(0)$ and $|f(z)|$ is constant then f is constant.
7. Suppose that f is an analytic function defined in U and that $c:[0,1] \rightarrow U$ is a C^{1}-curve. The composition $t \rightarrow f(c(t))$ can be thought of as a map h from [0, 1] into \mathbb{R}^{2}. Show that the first derivative of this map can be computed using the chain rule:

$$
\begin{equation*}
D h(t)=\left[\operatorname{Re}\left(f^{\prime}(c(t)) c^{\prime}(t)\right), \operatorname{Im}\left(f^{\prime}(c(t)) c^{\prime}(t)\right)\right] . \tag{11}
\end{equation*}
$$

Here we think of c as a complex valued function $c(t)=c_{1}(t)+i c_{2}(t)$, with c_{1}, c_{2} real valued functions. Note: This does not follow from (4) as c is not an analytic map (or even defined in an open subset of \mathbb{C}).
8. Using the definition of the complex contour integral evaluate the following integrals over γ, the semi-circle $\{z:|z|=1, \operatorname{Im} z>0\}$, oriented from 1 to -1 .
(a) $\int_{\gamma} \frac{d z}{z^{n}}$ where $n \in \mathbb{N}$.
(b) $\int_{\gamma} \bar{z}^{n} d z$, where $n \in \mathbb{Z}$.
(c) $\int_{\gamma} z^{n} \bar{z}^{n} d z$, where $n \in \mathbb{Z}$.
9. Suppose that $f(z, \bar{z})$ is a \mathscr{C}^{1}, complex valued function defined $D_{1}(0)$ that satisfies the partial differential equation

$$
\begin{equation*}
\partial_{z} f=0 \tag{12}
\end{equation*}
$$

Let Γ be a \mathscr{C}^{1}, simple closed in $D_{1}(0)$. What can you say about the value of

$$
\begin{equation*}
\oint_{\Gamma} f(z, \bar{z}) d \bar{z} ? \tag{13}
\end{equation*}
$$

Give an example of non-constant function that satisfies (12).

