1. Determine if the following are True or False. Briefly explain why.
 a. \(\forall x \in \mathbb{R} \ \exists y \in \mathbb{R} \ \ x^2 = y \)
 b. \(\exists y \in \mathbb{R} \ \forall x \in \mathbb{R} \ \ x^2 = y \)
 c. \(\forall y \in \mathbb{R} \ \exists x \in \mathbb{R} \ \ x^2 = y \)

2. Write the parts in boxes using symbolic notation \(\forall \) and \(\exists \)
 a. \(\text{Let } A \subseteq \mathbb{R} \) \(A \) is a bounded set (Definition: \(A \) is bounded if it has an upper bound and a lower bound)
 b. \(f(x) = 0 \) has a unique solution. (This tells both that a solution exists and there are no other solutions. Hint: (4) in page 85)
 c. Let \(\alpha, \beta \) be solutions to \(\cos(5x) = 0 \) Then \(\alpha \) and \(\beta \) differ by a multiple of \(\pi/5 \). (Hint: \(\alpha - \beta = k \cdot \pi/5 \) need quantifier and constraint on \(k \))

3. Find the negation of: \(\forall x \in S \ \exists y \in \mathbb{R} \ \ p(x, y) \Rightarrow q(x, y) \)

4. Show in details \(\forall x \in \mathbb{R}^+ \ \exists m \in \mathbb{Z}^+ \ \forall n \in \mathbb{N} \) \(n > m \Rightarrow \left| \frac{3n^2 + 7}{n^2} - 3 \right| < \varepsilon \)