AXIOM 8.1. For all \(x, y, z \in \mathbb{R} \),
(i) \(x + y = y + x \)
(ii) \((x + y) + z = x + (y + z) \)
(iii) \(x \cdot (y + z) = x \cdot y + x \cdot z \)
(iv) \(x \cdot y = y \cdot x \)
(v) \((x \cdot y) \cdot z = x \cdot (y \cdot z) \)

AXIOM 8.2. There exists a number 0, such that for all \(x \in \mathbb{R}, x + 0 = x \)

AXIOM 8.3. There exists a number 1 such that \(1 \neq 0 \) and whenever \(x \in \mathbb{R}, x \cdot 1 = x \)

AXIOM 8.4. For each \(x \in \mathbb{R} \), there exists a real number, denoted by \(-x \), such that \(x + (-x) = 0 \)

AXIOM 8.5. For each \(x \in \mathbb{R} \setminus \{0\} \), there exists a real number, denoted by \(x^{-1} \), such that \(x \cdot x^{-1} = 1 \)

Define subtraction in \(\mathbb{R} \) by \(x - y = x + (-y) \)

AXIOM 8.26. There exists a subset \(\mathbb{R}^> \) of \(\mathbb{R} \) satisfying
(i) If \(x, y \in \mathbb{R}^> \) then \(x + y \in \mathbb{R}^> \)
(ii) If \(x, y \in \mathbb{R}^> \) then \(x \cdot y \in \mathbb{R}^> \)
(iii) \(0 \notin \mathbb{R}^> \)
(iv) For every \(x \in \mathbb{R} \), we have \(x \in \mathbb{R}^> \) or \(x = 0 \) or \(-x \in \mathbb{R}^> \)

Members of \(\mathbb{R}^> \) are called positive real numbers. A negative real number is a real number that is neither positive nor zero.

We write \(x < y \) if \(y - x \in \mathbb{R}^> \), and say \(x \) is less than \(y \). Similarly we write \(x \leq y \) if \(y - x \in \mathbb{R}^> \) or \(x = y \), and say \(x \) is less than or equal to \(y \).

Let \(A \) be a nonempty subset of \(\mathbb{R} \). The set \(A \) is bounded above if there exists \(b \in \mathbb{R} \) such that for all \(a \in A \), \(a \leq b \). Any such number \(b \) is called an upper bound for \(A \). If \(b \) is an upper bound for \(A \) that is less than any other upper bound for \(A \), it is called a least upper bound for \(A \) and is denoted by sup(\(A \)) (sup is an abbreviation for supremum).

Note that so far \(\mathbb{Q} \) satisfies all the axioms we have listed. For subsets of \(\mathbb{Q} \), supremum might not exist within rational numbers such as for \(A = \{ x \in \mathbb{Q} \mid x^2 < 3 \} \). To characterize real numbers we require one more axiom to be satisfied:

AXIOM 8.52. (Completeness axiom). Every nonempty subset of \(\mathbb{R} \) that is bounded above has a least upper bound.

So far we have notations for only two special real numbers: 0 and 1. Next we define \(2 = 1 + 1 \), \(3 = 2 + 1 \), ..., \(9 = 8 + 1 \), which are called digits. Natural numbers within the set of real numbers is defined by finite sums of the form \(1 + 1 + ... + 1 \), in particular the natural number \(n \) corresponds to the sum of \(n \) copies of 1.

THEOREM 8.42. \(\mathbb{R}^> \) does not have a smallest element.

THEOREM 10.1. The set of natural numbers as a subset of \(\mathbb{R} \) is not bounded above in \(\mathbb{R} \).

PROPOSITION 10.4. For each \(\epsilon \in \mathbb{R}^> \), there exists \(n \in \mathbb{N} \) such that \(\frac{1}{n} < \epsilon \).

PROPOSITION 10.11. Let \(x, y \in \mathbb{R} \). Then \(x = y \) if and only if for every \(\epsilon > 0 \) we have \(|x - y| \leq \epsilon \).

EXERCISE 1. Using these axioms, show that \((x \cdot y)^{-1} = x^{-1} \cdot y^{-1} \).

EXERCISE 2. Using these axioms, show that 1 is a positive real number. (Hint: use proof by contradiction, Axiom 8.26(iv) and Axiom 8.26(ii))