28.6 (iii): Suppose \(x = qy + r \), where \(x, y, q, r \in \mathbb{Z} \) (you do not need to assume that \(y \) does not divide \(x \)). We want to prove that \(\gcd(x, y) = \gcd(y, r) \). Let \(d := \gcd(x, y) \). This means that \(d \) divides \(x \) and \(y \). By the relation \(r = x - qy \), it follows from Theorem 27.5 that \(d \) divides \(r \). So \(d \) is a common divisor of \(y \) and \(r \), and hence \(d \leq \gcd(y, r) \).

Next, we want to prove that \(d \) is the greatest integer that divides \(y \) and \(r \). For this, we follow Houston’s suggestion to prove by contradiction (however, there is a direct approach which also works). Then we assume there is some \(e \) which divides \(y \) and \(r \), and \(d < e \). Then \(e \) also divides \(x = qy + r \), and so \(e \leq \gcd(x, y) = d \), which is a contradiction.

Here is an alternative way to finish the proof after the first paragraph: By definition, \(\gcd(y, r) \) divides \(y \) and \(r \), so it must divide \(x = qy + r \) by Theorem 27.5. This implies \(\gcd(y, r) \leq d = \gcd(x, y) \), which proves \(\gcd(x, y) = \gcd(y, r) \).

28.19 (i): \(\gcd(14592, 6468) = 12 \) and \(\gcd(-12870, 4914) = 234 \).