1. Decide whether the following statements are true or false. Prove the true ones and provide counterexamples for the false ones.

(a) If \(a_n \) converges, then \(a_n/n \) converges.

(b) If \(a_n \) converges and \(b_n \) is bounded, then \(a_n b_n \) converges.

(c) If \(a_n \to \infty \) and \(b_n \to -\infty \) as \(n \to \infty \), then \(a_n + b_n \to 0 \) as \(n \to \infty \).

(d) If \(a_n \to 0 \) and \(b_n \to 1 \) as \(n \to \infty \), then \(b_n/a_n \to \infty \) as \(n \to \infty \).

2. Suppose that \(\{a_n\} \) is bounded. Prove that \(a_n/n^k \to 0 \), as \(n \to \infty \) for all \(k \in \mathbb{N} \).

3. Using the formal definition of the limit proof that if \(\lim_{n \to \infty} a_n = 1 \) then \(\lim_{n \to \infty} \frac{a_n^2 - e}{a_n} = 1 - e \).

4. (AC) Let \(S \) be the set of all functions \(f : \mathbb{N} \to \mathbb{N} \). Define a relation on \(S \) by letting \(f \sim g \) if and only if \(f(n) = g(n) \) for infinitely many \(n \). Is this an equivalence relation? If so describe the equivalence classes.

5. (AC) Prove (assuming basic results of calculus) that \(\int_{0}^{\infty} x^n e^{-x} dx = n! \).

6. (AC) For a function \(f : \mathbb{R} \to \mathbb{R} \), define \(\lim_{x \to c} f(x) = L \) to mean that \(\forall \epsilon > 0 \ \exists \delta > 0 \) such that \(\forall x \in \mathbb{R}, |x - c| < \delta \Rightarrow |f(x) - L| < \epsilon \). Define the function \(s : \mathbb{R} \to \mathbb{R} \) by

\[
s(x) = \begin{cases}
0 & : x \leq 0 \\
1 & : x > 0
\end{cases}
\]

Prove by negating the definition of limit that it is not true that \(\lim_{x \to 0} s(x) = 0 \).

7. (a) Use a multiplication table to find all values \(a \in \mathbb{Z}_7 \) for which the equation

\[
x^2 = a
\]

has a solution \(x \in \mathbb{Z}_7 \). For each such \(a \), list all of the solutions \(x \).

(b) Find all solutions \(x \in \mathbb{Z}_7 \) to the equation \(x^2 + 2x + 6 = 0 \).

8. Use quantifiers to express what it means for a sequence \((x_n)_{n \in \mathbb{N}} \) to diverge. You cannot use the terms not or converge.

9. Suppose \(A, B \subseteq \mathbb{R} \) are bounded and non-empty. Show that \(\sup(A \cup B) = \max\{\sup(A), \sup(B)\} \).

10. Suppose \(S \subseteq \mathbb{R} \) is bounded and non-empty. Define a new set \(3S \) by \(3S = \{3x \mid x \in S\} \). Show that \(\sup(3S) = 3\sup(S) \).

11. Let \(A, B \) be sets, and suppose there is a surjection \(f : A \to B \). Prove that there is an injection \(g : B \to A \).
12. (a) Define \(x \in \mathbb{R} \) to be a **linear algebraic number** if there are integers \(a, b \in \mathbb{Z} \), with \(a \neq 0 \), such that \(ax + b = 0 \).
Prove that the set of linear algebraic numbers is countable. *Hint: Construct an injection into the set \(\mathbb{Z}^2 \).*

(b) Define \(x \in \mathbb{R} \) to be a **quadratic algebraic number** if there are integers \(a, b, c \in \mathbb{Z} \), with \(a \neq 0 \), such that \(ax^2 + bx + c = 0 \). Prove that the set of quadratic algebraic numbers is countable. *Hint: Construct an injection into the set \(\mathbb{Z}^3 \).*

13. Use the formal definition of limit to prove the following.

\[
\begin{align*}
(a) & \quad \lim_{n \to \infty} \frac{n^2 + 3}{2n^3 - 4} = 0 \\
(b) & \quad \lim_{n \to \infty} \frac{4n - 5}{2n + 7} = 2 \\
(c) & \quad \lim_{n \to \infty} \frac{n^3 - 3n}{n + 5} = +\infty \\
(d) & \quad \lim_{n \to \infty} \frac{n^2 - 7}{1 - n} = -\infty
\end{align*}
\]

14. For each of the following, determine if \(\sim \) defines an equivalence relation on the set \(S \). If it does, prove it and describe the equivalence classes. If it does not, explain why.

(a) \(S = \mathbb{R} \times \mathbb{R} \). For \((a, b)\) and \((c, d)\) \(\in \) \(S \), define \((a, b) \sim (c, d)\) if \(3a + 5b = 3c + 5d \).

(b) \(S = \mathbb{R} \). For \(a, b \in S \), \(a \sim b \) if \(a < b \).

(c) \(S = \mathbb{Z} \). For \(a, b \in S \), \(a \sim b \) if \(a \mid b \).

(d) \(S = \mathbb{R} \times \mathbb{R} \). For \((a, b)\) and \((c, d)\) \(\in \) \(S \), define \((a, b) \sim (c, d)\) if \(\lceil a \rceil = \lceil c \rceil \) and \(\lceil b \rceil = \lceil d \rceil \). Here \(\lceil x \rceil \) is the smallest integer greater than or equal to \(x \).

15. Consider \(\mathbb{Z}_n \).

(a) Under what conditions on \(n \) does every nonzero element have a multiplicative inverse? How about an additive inverse?

(b) Does every nonzero element have a multiplicative inverse in \(\mathbb{Z}_{21} \)?

(c) Does 5 have a multiplicative inverse in \(\mathbb{Z}_{21} \)? Explain why or why not. If it does, find \(5^{-1} \).

(d) Solve the equation \(5x - 14 = 19 \) in \(\mathbb{Z}_{21} \).

16. Let \(A = \{a, b, c\} \) and \(B = \{a, x\} \). List all elements of

(a) \(A \cup B \)

(b) \(A \cap B \)

(c) \(A \setminus B \)
17. Let \(S(n) = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid \max\{x, y\} = n\} \). Prove that \(S(3) \cap S(5) \) is the empty set.

18. Let \(A \) and \(B \) be sets with \(n \) elements. Show that any injective function from \(A \) to \(B \) is surjective as well using induction on \(n \).

19. Let \(f : \mathbb{N} \to \mathbb{N} \), given by \(f(n) = |n - 4| \).
 (a) Prove that \(f \) is surjective
 (b) Prove that \(f \) is not injective

20. Let \(f : A \to B \) and \(g : B \to A \) be functions satisfying \(f(g(x)) = x \) for all \(x \in B \). Prove that \(f \) is surjective.

21. Let \(X \) be a set with \(n \) elements and \(B = \{p, q\} \). Find the number of surjective functions from \(X \) to \(B \).

22. Describe a concrete bijection from \(\mathbb{N} \) to \(\mathbb{N} \times \{1, 2, 3\} \). Briefly tell why it is injective and surjective.

23. Make a truth table for \(\neg (A \lor B) \implies A \land B \). Find a shorter logically equivalent expression.

24. Find the negations of the following statements:
 (a) \((A \lor B) \land (B \lor C) \)
 (b) \(A \implies (B \land C) \)
 (c) \(\forall x \exists y \ (P(x) \lor \neg Q(y)) \)