1. (a) (10 points) Use a power series to define \(\sin(x) \), where \(x \) is a real number measured in degrees. Briefly explain your answer.

(b) (10 points) Define \(\sin(x) \) using the power series definition, with \(x \) measured in degrees. Determine the value of

\[
\lim_{x \to 0} \frac{\sin(x)}{x}.
\]

Briefly explain your answer.
2. (30 points) Define \(\sin(x) \) and \(\cos(x) \) using the unit circle definition, with \(x \) measured in radians. Use the limit definition of derivative, and the identities

\[
\lim_{x \to 0} \frac{\sin(x)}{x} = 1 \\
\lim_{x \to 0} \frac{1 - \cos(x)}{x} = 0
\]

(1)

to show that

\[
\frac{d}{dx} \sin(x) = \cos(x).
\]
3. (20 points) Define \(\sin(x) \) using the unit circle definition, with \(x \) measured in radians. Does \(\sin : \mathbb{R} \rightarrow \mathbb{R} \) have an inverse? Explain your answer.
4. (30 points) Let Δ be an isosceles triangle. Recall that this means Δ has two sides a, b with the same length. Let $0 \leq \theta \leq \pi$ be the measure of the angle between the two sides a, b. Find the value of θ that maximizes the area of Δ. You may assume the common length of a, b remains fixed and equal to 1.
Extra Credit. (20 points) Define $\sin(x)$ and $\cos(x)$ using the unit circle definition, with x measured in radians. Show that

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1.$$