4 Using The Derivative

4.1 Local Maxima and Minima

* Local Maxima and Minima

Suppose *p* is a point in the domain of *f*:

- *f* has a **local minimum** at *p* if *f*(*p*) is *less than or equal to* the values of *f* for points near *p*.
- *f* has a **local maximum** at *p* if *f*(*p*) is *greater than or equal to* the values of *f* for points near *p*.

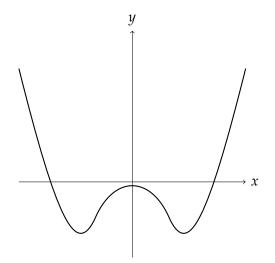
* How Do We Detect a Local Maximum or Minimum?

Suppose *p* is a point in the domain of *f*:

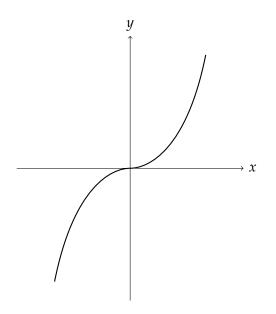
For any function f, a point p in the domain of f where f'(p) = 0 or f'(p) is undefined is called a **critical point** of the function.

If a function, continuous on an interval (its domain), has a local maximum or minimum at p, then p is a critical point or an endpoint of the interval.

Example 1 For f(x) given below, indicate all critical points of the function f. How many critical points are there? Identify each critical point as a local maximum, a local minimum, or neither.



Example 2 For f(x) given below, indicate all critical points of the function f. How many critical points are there? Identify each critical point as a local maximum, a local minimum, or neither.



Example 3 (a) Graph a function with two local minima and one local maximum.

(b) Graph a function with two critical points. One of these critical points should be a local minimum, and the other should be neither a local maximum nor a local minimum.

* Testing For Local Maxima and Minima

First Derivative Test for Local Maxima and Minima

Suppose *p* is a critical point of a continuous function *f*. Then, as we go from left to right:

- If *f* changes from decreasing to increasing at *p*, then *f* has a local minimum at *p*.
- If *f* changes from increasing to decreasing at *p*, then *f* has a local maximum at *p*.

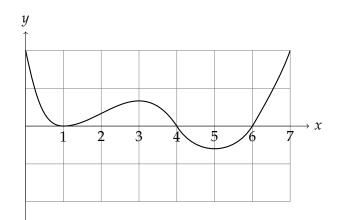
Example 4 (a) Graph a function f with the following properties:

- f(x) has critical points at x = 2 and x = 5;
- f'(x) is positive to the left of 2 and positive to the right of 5;
- f'(x) is negative between 2 and 5.

(b) Identify the critical points as local maxima, local minima, or neither.

Example 5 Given the graph of f'(x) below.

- (a) What are the critical points of the function f(x)?
- (b) Identify each critical point as a local maximum, a local minimum, or neither.



Example 6 The derivative of f(t) is given by $f'(t) = t^3 - 6t^2 + 8t$ for $0 \le t \le 5$. Graph f'(t), and describe how the function f(t) changes over the interval t = 0 to t = 5. When is f(t) increasing and when is it decreasing? Where does f(t) have a local maximum and where does it have a local minimum?

Example 7	Suppose	f has a c	continuous	derivative	whose	values are	given i	in the	following t	able.

x	0	1	2	3	4	5	6	7	8	9	10
f'(x)	5	2	1	-2	-5	-3	-1	2	3	1	-1

- (a) Estimate the x-coordinates of critical points of f for $0 \le x \le 10$.
- (b) For each critical point, indicate if it is a local maximum of f, local minimum, or neither.

Second Derivative Test for Local Maxima and Minima Suppose *p* is a critical point of a continuous function *f*, and f'(p) = 0.

- If *f* is concave up at *p*, then *f* has a local minimum at *p*.
- If *f* is concave down at *p*, then *f* has a local maximum at *p*.

Example 8 Given $f(x) = x^3 - 9x^2 - 48x + 52$.

- (*a*) Find all critical points of f.
- (b) Use the second derivative test to classify each critical point as a local max, a local min, or neither.

Example 9 Find and classify the critical points of $f(x) = x^3(1-x)^4$ as local maxima and minima.

Example 10 Find constants a and b so that $f(x) = a(x - b \ln x)$ has a local minimum at the point (2,5).

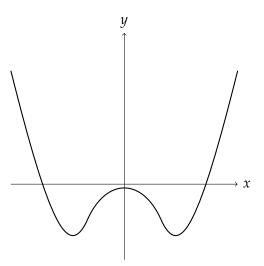
4.2 Inflection Points

* Concavity and Inflection Points

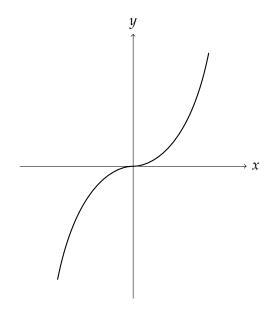
A point at which the graph of a function f changes concavity is called an **inflection point** of f.

If *p* is an inflection point of *f*, then either f''(p) = 0 or f'' is undefined at *p*.

Example 1 For the graph of f(x) given below, indicate the approximate locations of all inflection points. *How many inflection points are there?*



Example 2 For the graph of f(x) given below, indicate the approximate locations of all inflection points. *How many inflection points are there?*



Example 3 Find the inflection points of $f(x) = x^3 - 9x^2 - 48x + 52$.

Example 4 Graph a function f with the following properties: f has a critical point at x = 4 and an inflection point at x = 8; the value of f' is negative to the left of 4 and positive to the right of 4; the value of f'' is positive to the left of 8 and negative to the right of 8.

Example 5 Find the critical points and inflection points of $f(x) = xe^{-x}$.

Example 6 Find the critical points and inflection points of $f(x) = 2x^3 + 3x^2 - 36x + 5$.