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Abstract. We establish a relation between the “large r” asymptotics of the Turaev-Viro
invariants TVr and the Gromov norm of 3-manifolds. We show that for any orientable,
compact 3-manifold M , with (possibly empty) toroidal boundary, log |TVr(M)| is bounded
above by a function linear in r and whose slope is a positive universal constant times the
Gromov norm of M . The proof combines TQFT techniques, geometric decomposition
theory of 3-manifolds and analytical estimates of 6j-symbols.

We obtain topological criteria that can be used to check whether the growth is actually
exponential; that is one has log |TVr(M)| > B r, for some B > 0. We use these criteria to
construct infinite families of hyperbolic 3-manifolds whose SO(3) Turaev-Viro invariants
grow exponentially. These constructions are essential for the results of [9] where the authors
make progress on a conjecture of Andersen, Masbaum and Ueno about the geometric
properties of surface mapping class groups detected by the quantum representations.

We also study the behavior of the Turaev-Viro invariants under cutting and gluing of
3-manifolds along tori. In particular, we show that, like the Gromov norm, the values of
the invariants do not increase under Dehn filling and we give applications of this result on
the question of the extent to which relations between the invariants TVr and hyperbolic
volume are preserved under Dehn filling.

Finally we give constructions of 3-manifolds, both with zero and non-zero Gromov
norm, for which the Turaev-Viro invariants determine the Gromov norm.

1. Introduction

Since the discovery of the quantum 3-manifold invariants in the late 80’s, it has been a
major challenge to understand their relations to the topology and geometry of 3-manifolds.
Open conjectures predict tight connections between quantum invariants and the geometries
coming from Thurston’s geometrization picture [5, 6]. However, despite compelling physics
and experimental evidence, progress to these conjectures has been scarce. For instance, the
volume conjecture for the colored Jones polynomial has only been verified for a handful of
hyperbolic knots to date. The reader is referred to [5] for survey articles on the subject and
for related conjectures. On the other hand, coarse relations between the stable coefficients of
colored Jones polynomials and volume have been established for an abundance of hyperbolic
knots [8, 13, 15].

In this paper we are concerned with the question of how the “large level” asymptotics of
the Turaev-Viro 3-manifold invariants relate to, and interact with, the geometric decompo-
sition of 3-manifolds. The Turaev-Viro invariants TVr(M) of a compact oriented 3-manifold
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M are combinatorially defined invariants that can be computed from triangulations of M
[32]. They are real valued invariants, indexed by a positive integer r, called the level, and
for each r they depend on an 2r-th root of unity. We combine TQFT techniques, geometric
decomposition theory of 3-manifolds and analytical estimates of 6j-symbols to show that,
the r-growth of TVr(M) is bounded above by a function exponential in r that involves the
Gromov norm of M .

We also obtain topological criteria for the growth to be exponential; that is to have
TVr(M) > expBr with B a positive constant. We use these criteria to construct infinite
families of hyperbolic 3-manifolds whose SO(3)-Turaev-Viro invariants grow exponentially.
These results are used by the authors [9] to make progress on a conjecture of Andersen,
Masbaum and Ueno (AMU Conjecture) about the geometric properties of surface mapping
class groups detected by the quantum representations.

1.1. Upper bounds. For a compact oriented 3-manifold M, let TVr(M, q) denote the r-th
Turaev-Viro invariant of M at root q, where q is a 2r-th root of unity such that q2 is a

primitive r-th root of unity. Throughout the paper we will work with q2 = e
2πi
r and r

an odd integer and we will often write TVr(M) := TVr(M, e
2πi
r ). This is the theory that

corresponds to the SO(3) gauge group. We define,

(1) LTV (M) = lim sup
r→∞

2π

r
log |TVr(M))|

where r runs over all odd integers. Also we will use ||M || to denote the Gromov norm (or
simplicial volume) of M . See Section 2.1 of definitions. The main result of this article is
the following.

Theorem 1.1. There exists a universal constant C > 0 such that for any compact orientable
3-manifold M with empty or toroidal boundary we have

LTV (M) 6 C||M ||.

If the interior of M admits a complete hyperbolic structure then, by Moscow rigidity,
the hyperbolic metric is essentially unique and the volume of the metric is a topological
invariant denoted by vol(M), that is essentially the Gromov norm. In this case, Theorem
1.1 provides a relation between hyperbolic geometry and the Turaev-Viro invariants. If M
is the complement of a hyperbolic link in S3 then we know that lTV (M) > 0 and in many
instances the inequality is strict (Corollary 1.3 ).

The problem of estimating the volume of hyperbolic 3-manifolds in terms of topological
quantities and quantum invariants, has been studied considerably in the literature. See
for example [1, 13, 14] and references in the last item. Despite progress, to the best of our
knowledge, Theorem 1.1 gives the first such linear lower bound that works for all hyperbolic
3-manifolds.

In the generality that Theorem 1.1 is stated, the constant C is about 8.3581 × 109.
However, within classes of 3-manifolds, one has much more effective estimates. For instance,
Theorem 7.4 of this paper shows that for most (in a certain sense) hyperbolic links L ⊂ S3

we have
LTV (S3rL) 6 10.5 vol(S3rL).
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Furthermore, given any constant E arbitrarily close to 1, one has infinite families of hyper-
bolic closed and cusped 3-manifolds M , with LTV (S3rL) 6 E vol(S3rL). See Section
7.2. for precise statements and more details.

We also give families of 3-manifolds with LTV (M) = ||M ||. One such family of examples
is the class of links with zero Gromov norm in S3 or in S1×S2, but we also present families
with non-zero norm (Section 8).

1.2. Outline of proof of Theorem 1.1. A major step in the proof is to show that
LTV (M) is finite for any compact oriented 3-manifold M . This is done by studying the
large r asymptotic behavior of the quantum 6j-symbols, and using the state sum formulae
for the invariants TVr. More specifically, we prove the following.

Theorem 1.2. Suppose that M is a compact, oriented manifold with a triangulation con-
sisting of t tetrahedra. Then, we have

LTV (M) 6 2.08 v8 t,

where v8 ' 3.6638.. is the volume of a regular ideal octahedron.

A second key argument we need is Theorem 5.2 of the paper which describes the behavior
of the Turaev-Viro invariants under the operation of gluing or cutting 3-manifolds along
tori. The proof of the theorem uses a version of a result of Roberts and Benedetti-Petronio

that relates TVr(M, e
2πi
r ) to the SO(3)-Witten-Reshetikhin-Turaev invariants, and it relies

heavily on the properties of the corresponding TQFT as constructed by Blanchet, Habegger,
Masbaum and Vogel [4].

A third important ingredient in the proof of Theorem 1.1 is a theorem of Thurston
asserting that given a hyperbolic 3-manifold M , after drilling out finitely many geodesics we
obtain a 3-manifold admitting a triangulation with number of tetrahedra bounded above by
a constant times vol(M). By the Geometrization Theorem, a compact oriented 3-manifold
M , with possibly empty toroidal boundary can be cut along a canonical collection of tori
into pieces that are either Seifert fibered manifolds or hyperbolic (JSJ-decomposition). We
prove Theorem 1.1 by exploiting, by means of Theorem 5.2, compatibility properties of
||M || and LTV with the JSJ decomposition, and by studying separately LTV for Seifert
fibered manifolds and hyperbolic manifolds.

1.3. Lower bounds and the AMU Conjecture. A very interesting problem, that we
will not address in this paper, is to prove the opposite inequality of that given in Theorem
1.1. We will discuss the weaker problem of exponential r-growth of the invariants TVr(M).
Define

lTV (M) = lim inf
r→∞

2π

r
log |TVr(M)|,

where r runs over all odd integers.
In Section 5 we show that, much like the Gromov norm, the value of the invariant

lTV (M) does not increase under the operation of Dehn filling and we discuss applications
to the question of the extent to which relations between Turaev-Viro invariants and hyper-
bolic volume are preserved under Dehn filling. This in turn, leads a topological criterion
for checking whether the invariants TVr(M), of a 3-manifold M , grow exponentially with
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respect to r. That is checking whether lTV (M) > 0. As a concrete application of this
criterion, combined with a result of [10], we mention the following.

Corollary 1.3. Let M ⊂ S3 denote the complement of the figure-8 knot or the Borromean
rings. For any link L ⊂M we have

lTV (MrL) > 2v3,

where v3 ∼ 1.0149 is volume of a regular ideal tetrahedron.

Since, by [10], the invariants TVr(S
3rL) of a link complement are expressed in terms of

the colored Jones polynomial of L, Corollary 1.3 also provides new instances of colored Jones
polynomial values with exponential growth. As far as we know this is the first instance where
exponential growth of a quantum type invariant follows from a topological argument rather
than brute force computations. The result is consistent with the TVr volume conjecture
of Chen and Yang [6], which claims that for any hyperbolic 3-manifold of finite volume we
should have lTV (M) = LTV (M) = vol(M). See Section 8 for more details.

Establishing exponential growth of the invariants TVr is also important for another in-
triguing and wide-open conjecture in quantum topology, namely the AMU Conjecture [2].
In particular, Corollary 1.3 has an essential application to this conjecture that we will
explain next.

For a compact orientable 3-manifold of genus g and n boundary components, say Σg,n,
let Mod(Σg,n) denote its mapping class group. The AMU conjecture asserts that the SU(2)
and SO(3) quantum representations Mod(Σg,n) should send pseudo-Anosov mapping classes
to elements of infinite order (for large enough level). Despite good progress on the AMU
Conjecture for low genus surfaces [2, 11, 27, 26], the first examples that satisfy the conjecture
in surfaces of genus at least 2 were recently given by Marché and Santharoubane [21].

In [9] the authors show that if we have lTV (M) > 0 for all hyperbolic 3-manifolds that
fiber over the circle, then the AMU Conjecture is true. Corollary 1.3 is then one of the key
ingredients used in [9] to prove the following.

Theorem 1.4. ([9]) Suppose that either n = 2 and g > 3 or g > n > 3. Then there are
infinitely many non-conjugate pseudo-Anosov mapping classes in Mod(Σg,n) that satisfy the
AMU conjecture.

As far as we know Theorem 1.4 is the first result that provides infinitely many mapping
classes that satisfy the AMU conjecture for fixed surfaces of genus at least 2.

The paper is organized as follows: In Section 2, we recall some results about the simplicial
volume and the geometric decomposition of 3-manifolds. In Section 3, we define the Turaev-
Viro invariants and explain their TQFT properties. In Section 4.2 we provide a bound for
quantum 6j-symbols that are used to define to TVr invariants, in terms of values of the
Lobachevsky function. In Section 5 we study the behavior of LTV under the operations of
cutting or gluing along tori. In Section 6, we study the special case of Seifert manifolds. In
Section 7 we finish the proof of Theorem 1.1 and we derive Corollaries 7.2 and 1.3 and some
generalizations. Finally, in Section 8, we provide some new examples where the growth rate
of Turaev-Viro invariants exactly computes the simplicial volume.

Acknowledgement. We thank Gregor Masbaum and Tian Yang for their interest in this
work and for helpful discussions.
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2. Decompositions of 3-manifolds

2.1. Gromov norm preliminaries. In this section, we recall the definition of the simpli-
cial volume of a 3-manifold and some of its classical properties. Gromov defined simplicial
volume of n-manifolds in [17], here we restrict ourselves to orientable 3-manifolds only. For
more details the reader is referred to [29, Section 6.5].

Definition 2.1. [17, 29] Let M be a compact orientable 3-manifold with empty or toroidal
boundary. Consider the fundamental class [M,∂M ] in the singular homologyH3(M,∂M,R).
For z =

∑
ciσi ∈ Z3(M,∂M,R), a 3-relative singular cycle, representing [M,∂M ], we define

its norm to be the real number ||z|| =
∑
|ci|.

(1) If ∂M = ∅, then the simplicial volume of M is

||M || = inf{||z|| / [z] = [M ]}.
(2) If ∂M 6= ∅, the representative [z] = [M,∂M ] determines a representative ∂z of

[∂M ] ∈ H2(∂M,R). Then, as shown in [29, Section 6.5] the following limit exists,

||M || = lim
ε→0

inf{||z|| / [z] = [M,∂M ] and ||∂z|| 6 ε},

and is defined to be the simplicial volume of M .

For hyperbolic manifolds, the simplicial volume is proportional to the hyperbolic volume
and it is nicely behaved with respect to some topological operations.

Theorem 2.2. ([17, 29]) The following are true:

(1) ||M || is additive under disjoint union and connected sums of manifolds.
(2) If M has a self map of degree d > 1 then ||M || = 0. In particular ||Σ×S1|| = 0, for

any compact oriented surface Σ.
(3) If T is an embedded torus in M and M ′ is obtained from M by cutting along T then

||M || 6 ||M ′||,
Moreover, the inequality is an equality if T is incompressible in M.

(4) If M is obtained from M ′ by Dehn-filling of a torus boundary component in M ′,
then

||M || 6 ||M ′||,
(5) If M has a complete hyperbolic structure with finite volume then

vol(M) = v3||M ||.

2.2. Geometric decomposition. We recall that any compact oriented 3-manifold is a
connected sum of irreducible manifolds and copies of S2 × S1. Furthermore, by the Jaco-
Shalen-Johannson (JSJ) theorem, any irreducible 3-manifoldM can be cut along a collection
of incompressible tori T = {T1, . . . , Tn}, so that the components of Mr (T1 ∪ . . . ∪ Tn) are
irreducible atoroidal 3-manifolds.

Thurston’s Geometrization Conjecture [30], proved by Perelman, allows one to identify
the pieces of the JSJ decomposition. For details the reader is referred to books by Tian and
Morgan A consequence of Perelman’s work is the following theorem which is the solution
to Thurston’s Geometrization Conjecture [23].
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Theorem 2.3. (Geometrization Theorem, [23]) Any irreducible compact orientable 3-
manifold M contains a unique (up to isotopy) collection of disjointly embedded incompress-
ible tori T = {T1, . . . , Tn} such that all the connected components of MrT are either Seifert
fibered manifolds or hyperbolic.

2.3. Efficient bounds on triangulations of 3-manifolds. We conclude this section by
recalling a result about triangulations of 3-manifolds. As the Turaev-Viro invariants of a
manifold M are defined using state sums whose terms are products of quantum 6j-symbols
over a triangulation of M, we wish to use triangulations with few tetrahedra to bound the
Turaev-Viro invariants. For hyperbolic 3-manifolds, one way to achieve this is to consider
triangulations not of the manifold M itself, but rather of M minus some geodesics. We will
use the following theorem, due to W. Thurston, originally used in the proof of the so called
Jorgensen-Thurston Theorem [29, Theorem 5.11.2].

Theorem 2.4. (Thurston) There exists a universal constant C2, such that for any complete
hyperbolic 3-manifold M of finite volume, there exists a link L in M and a partially ideal
triangulation of MrL with less than C2||M || tetrahedra.

The proof of Theorem 2.4 comes from the thick-thin decomposition of hyperbolic mani-
folds. Moreover, the constant C2 in this theorem can be explicitly estimated:

It follows from the analysis in the proof of [29, Theorem 5.11.2] that given ε 6
c

2
, where

c is the Margulis constant, one can choose

C2 =

(
k
3

)
v3

4V (ε/4)
where k = bV (5ε/4)

V (ε/4)
c − 1,

where V (r) denotes the hyperbolic volume of a ball of radius r. The volume V (r) be can
be computed by the formula V (r) = π (sinh(2r)− 2r) (see, for example, [18, Section 3.1]).
Moreover, the Margulis constant has been shown to be at least at least 0.104 [22]. Using

ε =
0.103

2
we get that in Theorem 2.4, we can use C2 = 1.101× 109.

3. Turaev-Viro invariants, Reshetikhin-Turaev invariants and TQFT

In this section we summarize the definitions and the main properties of the quantum
invariants we will use in this paper. First we recall the definition of the Turaev-Viro invari-
ants as state sums on triangulations of 3-manifolds. Then in subsection 3.2 we summarize
the properties of the SO(3)-Reshetikhin-Turaev TQFT [4, 25, 31] that we will need in this
paper.

3.1. State sums for the Turaev-Viro invariants. Let r > 3 be an odd integer and let

q = e
2iπ
r . Define the quantum integer {n} by

{n} = qn − q−n = 2 sin(
2nπ

r
) = 2 sin(

2π

r
)[n], where [n] =

qn − q−n

q − q−1
=

2 sin(2nπ
r )

2 sin(2π
r )

,

and define the quantum factorial by {n}! =
n∏
i=1
{i}.
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Consider the set Ir = {0, 2, 4 . . . , r − 3} of all non-negative even integers less than r − 2.
A triple (ai, aj , ak) of elements in Ir, is called admissible if ai + aj + ak 6 2(r − 2) and we
have triangle inequalities ai 6 aj + ak, aj 6 ai + ak, and ak 6 ai + aj . For an admissible
triple we define ∆(ai, aj , ak) by

∆(ai, aj , ak) = ζ
1
2
r

(
{ai+aj−ak2 }!{aj+ak−ai2 }!{ai+ak−aj2 }!

{ai+aj+ak2 + 1}!

) 1
2

where ζr = 2 sin(
2π

r
). A 6-tuple (a1, a2, a3, a4, a5, a6) ∈ I6

r is called admissible if each of the

triples

(2) F1 = (a1, a2, a3), F2 = (a2, a4, a6), F3 = (a1, a5, a6) and F4 = (a3, a4, a5),

is admissible. Given an admissible 6-tuple (a1, a2, a3, a4, a5, a6), we define the quantum
6j-symbol at the root q by the formula

(3)∣∣∣∣a1 a2 a3

a4 a5 a6

∣∣∣∣ = (ζr)
−1(
√
−1)λ

4∏
i=1

∆(Fi)

min{Q1,Q2,Q3}∑
z=max{T1,T2,T3,T4}

(−1)z{z + 1}!∏4
j=1{z − Tj}!

∏3
k=1{Qk − z}!

where λ =

6∑
i=1

ai, and

T1 =
a1 + a2 + a3

2
, T2 =

a1 + a5 + a6

2
, T3 =

a2 + a4 + a6

2
and T4 =

a3 + a4 + a5

2
,

Q1 =
a1 + a2 + a4 + a5

2
, Q2 =

a1 + a3 + a4 + a6

2
and Q3 =

a2 + a3 + a5 + a6

2
.

Definition 3.1. An admissible coloring of a tetrahedron ∆ is an assignment of an admissible
6-tuple (a1, a2, a3, a4, a5, a6) of elements of Ir to the edges of ∆ so that the three numbers
assigned to the edges of each face form an admissible triple. In this setting, the quantities
Ti and Qi defined above correspond to the sums of colorings over faces of the tetrahedron,
and the sums of colorings of edges of normal quadrilaterals in ∆.

Given a compact orientable 3-manifold M consider a triangulation τ of M . If ∂M 6= ∅
we will allow τ to be a (partially) ideal triangulation, where some of the vertices of the
tetrahedra are truncated and the truncated faces triangulate ∂M . Given a partially ideal
triangulation τ the set V of interior vertices of τ is the set of vertices of τ which do not
lie on ∂M. Also we write E for the set of interior edges (thus excluding edges coming from
the truncation of vertices). A coloring at level r of the triangulated 3-manifold (M, τ) is an
assignment of elements of Ir to the edges of τ and is admissible if the 6-tuple assigned to
the edges of each tetrahedron of τ is admissible. Let c be an admissible coloring of (M, τ)

at level r. Given a coloring c and an edge e ∈ E let |e|c = (−1)c(e)[c(e) + 1]. Also for
∆ a tetrahedron in τ let |∆|c be the quantum 6j-symbol corresponding to the admissible
6-tuple assigned to ∆ by c. Finally, Ar(τ) denote the set of r-admissible colorings of τ and
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let ηr =
2 sin(2π

r )
√
r

. We are now ready to define the Turaev-Viro invariants as a state-sum

over Ar(τ):

Theorem 3.2. ([19, 32]) Let M be a compact orientable manifold closed or with boundary.
Let b2 denote the second Z2-Betti number of M and b0 is the number of closed connected
components in M . Then the state sum

(4) TVr(M) = 2b2−b0 η2|V |
r

∑
c∈Ar(τ)

∏
e∈E
|e|c

∏
∆∈τ
|∆|c,

is independent of the partially ideal triangulation τ of M, and thus defines a topological
invariant of M.

Note that while the definition above differs slightly from [19, Definition 7] by the use
of even colors only, by [10, Theorem 2.9] the two definitions are essentially the same; they
only differ by the factor of 2b2−b0 . The restriction of the coloring set to only even integers
is reminiscent to the SO(3) quantum invariant theory and it facilitates the study of the
Turaev-Viro invariants, for odd levels, via the SO(3)-TQFT theory of [4].

3.2. Reshetikhin-Turaev invariants and TQFT. The definition of the Turaev-Viro in-
variants given above will be useful for us to show that the upper limit LTV (M) is well
defined (i.e. it is finite). However, in order to understand the topological properties
of LTV (M) (i.e. its behavior under prime and toroidal decompositions of 3-manifolds)
it will be convenient for us to view Turaev-Viro invariants through their relation to the
Reshetikhin-Turaev invariantsRTr(M) ([24]), and the Reshetikhin-Turaev Topological Quan-
tum Field Theories (TQFTs) they are part of.
The Reshetikhin-Turaev TQFTs are functors from the category of cobordisms in dimension
2 + 1 to the category of finite dimensional vector spaces; they associate a finite dimensional
C-vector space RTr(Σ) to each compact oriented surface Σ, while their values on closed
3-manifolds M are the Reshetikhin-Turaev invariants RTr(M) which are C-valued and are
related to surgery presentations of 3-manifolds and colored Jones polynomials.
Also, for M with boundary ∂M = Σ, RTr(M) ∈ RTr(Σ) is a vector.
We will introduce these TQFTs in the skein-theoretic framework of Blanchet, Habegger,
Masbaum and Vogel [4]. As we restrict to level r odd, the TQFTs we are using are the so
called SO(3)-TQFTs. Below we will sketch only the properties of these TQFTs we need,
referring to [4] for a precise definition.

To fix some notations, we recall that when V is a C-vector space, V denotes the C-vector
space that is V as an abelian group and whose scalar multiplication is α · v = αv. When V
is a C-vector space, an Hermitian form 〈·, ·〉 on V is a map

〈·, ·〉 : V ⊗ V → C,

that satisfies 〈αv + w, v′〉 = α〈v, v′〉 + 〈w, v′〉 and 〈w, v〉 = 〈v, w〉. Note that an Hermitian
form can be considered a bilinear form over V ⊗ V .

Remark 3.3. We note that the invariants RTr(M) in [4] are only well-defined up to a 2r-th
root of unity, this ambiguity being called the anomaly of the TQFT. Resolving the anomaly
requires considering 3-manifolds M with an additional structure called a p1-structure, see
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[4] for details. As we will only be interested in the moduli of the RTr(M), we will neglect
the anomaly. We warn the reader, however, that the rules for computing RTr in Theorem
3.4 below have to be understood to hold up to a root of unity.

We summarize the main properties of the SO(3)-TQFT defined in [4] in the following
theorem:

Theorem 3.4. ([4, Theorem 1.4]) Let r be an odd integer and A be a primitive 2r-th root
of unity. Then there exists a TQFT functor RTr in dimension 2+1 satisfying:

(1) For any oriented compact closed 3-manifold M, RTr(M) ∈ C is a topological in-
variant. Moreover if M is the manifold M with the opposite orientation, then
RTr(M) = RTr(M).

(2) We have RTr(S
2 × S1) = 1 and RTr(S

3) = ηr =
2 sin(2π

r )
√
r

.

(3) The invariants RTr are multiplicative under disjoint union of 3-manifolds, and for
connected sums we have

RTr(M#M ′) = η−1
r RTr(M)RTr(M

′).

(4) For any closed compact oriented surface Σ, RTr(Σ) = Vr(Σ) is a finite dimensional
C-vector space and for disjoint unions we have natural isomorphisms

Vr(Σ1

∐
Σ2) ' Vr(Σ1)⊗ Vr(Σ2),

Moreover, Vr(∅) = C and for any oriented surface Vr(Σ) is the C-vector space Vr(Σ).
(5) To every compact oriented 3-manifold M with a fixed homeomorphism ∂M ' Σ

there is an associated vector RTr(M) ∈ Vr(Σ). Moreover for a disjoint union M =
M1
∐
M2, we have

RTr(M) = RTr(M1)⊗RTr(M2) ∈ Vr(Σ1)⊗ Vr(Σ2).

(6) For any odd integer r, there is a natural Hermitian form

〈·, ·〉 : Vr(Σ)⊗ Vr(Σ)→ C,

with the following property: Given M a compact oriented 3-manifold and Σ an
embedded surface in M, if we let M ′ be the manifold obtained by cutting M along
Σ, with ∂M ′ = Σ

∐
Σ
∐
∂M , then we have RTr(M) = Φ(RTr(M

′)). Here Φ is the
linear map

Φ : Vr(Σ)⊗ Vr(Σ)⊗ Vr(∂M) −→ Vr(∂M),

defined by Φ(v ⊗ w ⊗ ϕ) = 〈v, w〉ϕ.

Mapping Cylinders. A class of 3-manifolds with boundary to which the construction can
be applied are the mapping cylinders of maps of surfaces: Given a surface Σ and an element
ϕ ∈ Mod(Σ) in its mapping class group, let

Mϕ = [0, 1]× Σ ∪
(x,1)∼ϕ(x)

Σ.
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Then RTr(Mϕ) is a vector in Vr(Σ) ⊗ Vr(Σ). The later space can be identified with

End(Vr(Σ)) as Vr(Σ) ' Vr(Σ)∗ by the natural Hermitian form. The assignment ρr(ϕ) =
RTr(Mϕ), defines a projective representation

ρr : Mod(Σ) −→ PEnd(Vr(Σ)).

These representations are known as the the quantum representations of mapping class
groups; they are projective because of the above mentioned TQFT anomaly factor. Given
the mapping torus

Nϕ = [0, 1]× Σ/(x,1)∼(ϕ(x),0),

of a class ϕ ∈ Mod(Σ), by [4, Formula 1.2] we have RTr(Nϕ) = Tr(ρr(ϕ)). We will need
the following well-known fact which we state as a lemma.

Lemma 3.5. Let T 2 be the 2-dimensional torus and let ϕ : T 2 ' S1 × S1 → S1 × S1, be
the elliptic involution, defined by (x, y)→ (−x,−y). Then ρr(ϕ) = idVr(T 2).

In the next statement we summarize from [4] the facts about the dimensions of Vr(Σ)
that we will need.

Theorem 3.6. ([4]) We have the following:

(1) For any odd integer r > 3, and any primitive 2r-th root of unity, the Vr(T
2) has

dimension
r − 1

2
and the Hermitian form 〈·, ·〉 on Vr(T

2) is definite positive.

(2) If Σg is the closed compact oriented surface of genus g > 2, then dim(Vr(Σg)) is a
polynomial in r of degree 3g − 3.

Proof. The first assertion of part (1) is proved in [4, Corollary 4.10] and the second asser-
tion is given in [4, Remark 4.12]. The second assertion follows by [4, Corollary 1.16 and
Remark(iii)]. �

To continue recall that the double D(M) of a manifold M is defined as M
∐
M if M is

closed and as M ∪
Σ
M if M has non-empty boundary. We end this section with a theorem

that for a manifold M relates the SO(3)-Turaev-Viro invariants TVr(M) defined in Section
3.1, to the RTr invariant of the double D(M) of M .

Theorem 3.7. ([3]) Let M be a 3-manifold with boundary, r be an odd integer and q = e
2iπ
r .

Then

TVr(M, q) = η−χ(M)
r RTr(D(M), e

iπ
r ),

where χ(M) is the Euler characteristic of M and ηr =
2 sin(2π

r )
√
r

= RTr(S
3).

The proof of Theorem 3.7 for closed manifolds is due to Roberts [25] and Walker and Tu-
raev [31]. The proof for manifolds with non-empty boundary is essentially due to Benedetti
and Petronio [3]: Although in [3] only the invariants RTr(M) corresponding to the SU(2)-
TQFT are considered, the proof can be adapted is the SO(3)-TQFT setting. This was done
in [10, Theorem 3.1].
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4. Finiteness of LTV

The goal of this section is to prove Theorem 1.2. We first provide an upper bound to

quantum 6j-symbols at level r and at the root q = e
2iπ
r . Using this we bound the invariants

TVr(M) of a 3-manifold M in terms of the number of tetrahedra in a triangulation of M.
This, in particular, will prove that LTV (M) is finite.

4.1. Quantum factorials and the Lobachevsky function. It is a well known fact in
quantum topology that the asymptotics of quantum factorials are related to the Lobachevsky

function. In this section we give a version of this fact at the root q = e
2iπ
r .

For P a Laurent polynomial, let evr(P ) be the evaluation of the absolute value of P at

q = e
2iπ
r , that is

evr(P ) = |P (e
2iπ
r )|.

Let also Λ(x) denote the Lobachevski function, defined by

Λ(x) = −
∫ x

0
log |2 sin(x)|dx.

We estimate the growth of quantum factorials at q = e
2iπ
r using the following lemma.

Proposition 4.1. Given an integer 0 < n < r we have

log(evr({n}!)) = − r

2π
Λ(

2nπ

r
) +O(log r).

Moreover, in this estimate the O(log r) is uniform: there exists a constant C3 independent
of n and r, such that O(log r) 6 C3 log r.

Proof. First note that evr({n}!) =
n∏
j=1

2 sin(2jπ
r ). In this product as r is odd and 0 < n < r,

all factors are non-zero. Thus we can write

log(evr({n}!)) =

n∑
j=1

log |2 sin(
2jπ

r
)|.

The function

f(t) = log |2 sin(
2πt

r
)|,

is differentiable on (0, r2) and ( r2 , r).

Case 1: Assume that n < r
2 . The Euler-Mac Laurin formula gives that

log(evr({n}!)) =

∫ n

1
log |2 sin(

2πt

r
)|+ f(1) + f(n)

2
+R0,

where the R0 6 1
2

∫ n
1 |f

′(t)|dt 6 2 sup
t∈[1,n]

|f(t)| as f is increasing then decreasing on (0, r2).

Note that |n − r
2 | >

1
2 and sin(t) > 2t

π for 0 6 t 6 π
2 . Hence, the quantities |f(1)|, |f(n)|

and sup
t∈[1,n]

|f(t)| are all bounded by | log(4
r )| for big r. Moreover, for big r, we have∣∣∣∣∫ 1

0
log |2 sin(

2πt

r
)|dt
∣∣∣∣ 6 ∣∣∣∣∫ 1

0
log(

4t

r
)dt

∣∣∣∣ 6 | log r|+
∣∣∣∣∫ 1

0
log(4t)dt

∣∣∣∣ .
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Thus

log(evr({n}!)) =

∫ n

0
log |2 sin(

2πt

r
)|+O(log r)

=
r

kπ

∫ 2nπ
r

0
log |2 sin t|+O(log r) = − r

2π
Λ(

2nπ

r
) +O(log r).

Note that in all our estimations the O(log r) was independent on 0 < n < r
2 .

Case 2: Assume that n > r
2 . Now we write log(evr({n}!)) as a sum of two terms

log(evr({n}!)) =

b r
2
c∑

j=1

log |2 sin(
2jπ

r
)|+

n∑
j=d r

2
e

log |2 sin(
2jπ

r
)|,

Applying the Euler-Mac Laurin formula for each sum we get

log(evr({n}!)) =

∫ b r
2
c

1
log |2 sin(

2πt

r
)|dt+

∫ n

d r
2
e

log |2 sin(
2πt

r
)|dt

+
f(1) + f(b r2c) + f(d r2e) + f(n)

2
+R0,

where

R0 6
1

2

(∫ b r
2
c

1
|f ′(t)|dt+

∫ n

d r
2
e
|f ′(t)|dt

)
6 2

(
sup

t∈[1,b r
2
c]
|f(t)|+ sup

t∈[d r
2
e,n]
|f(t)|

)
,

as f is increasing then decreasing on (0, r2) and increasing then decreasing on ( r2 , r). Since r
is odd and r

2 is a half integer, similarly as in Case 1, we have that f(1), f(b r2c), f(d r2e), f(n)
are all 6 C3 log r for some C3 independent of n, and also∫ b r

2
c

1
log |2 sin(

2πt

r
)|dt+

∫ n

d r
2
e

log |2 sin(
2πt

r
)|dt

=

∫ n

0
log |2 sin(

2πt

r
)|dt+O(log r) = − r

2π
Λ(

2nπ

r
) +O(log r).

This concludes the proof of Proposition 4.1. �

4.2. Upper bounds for quantum 6j-symbols. In this section, we find an upper bound
for the quantum 6j-symbols that we will need for the proof of Theorem 1.2. We show the
following:

Proposition 4.2. For any r-admissible 6-tuple (a, b, c, d, e, f), we have that

2π

r
log

(
evr

∣∣∣∣a1 a2 a3

a4 a5 a6

∣∣∣∣ ) 6 v8 + 8Λ(
π

8
) +O(

log r

r
).

Moreover, in this estimate the O(
log r

r
) is uniform: there exists a constant C3 independent

of the a′is and r, such that O(
log r

r
) 6 C3

log r

r
.
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Remark 4.3. The above bound of v8+8Λ(π8 ) is not expected to be the optimal bound. In a
closely related context, Costantino proved that the growth rates of quantum 6j-symbols with
so-called hyperbolic admissibility conditions are given by volumes of hyperbolic truncated
tetrahedra [7]. The argument of Costantino is also applicable in our context from some
(but not all) values of the ai’s. In the end, we expect the maximum growth rate to be the
maximum volume of a hyperbolic truncated tetrahedron, which is v8.

Proof. By Equation 3, we have

log

(
evr

∣∣∣∣a1 a2 a3

a4 a5 a6

∣∣∣∣ ) =
4∑
i=1

log |∆(Fi)|+ log |S|+O(log r),

where

S =

min{Q1,Q2,Q3}∑
z=max{T1,T2,T3,T4}

(−1)z{z + 1}!∏4
j=1{z − Tj}!

∏3
k=1{Qk − z}!

,

and F1, F2, F3, F4 are defined in equation (2). Each of the ∆ terms is a product of 4 quantum
factorials. Moreover as Qj − Ti 6 (r − 2) for all i and j, we have

log|S| 6 max
maxTi6z6minQj

log

∣∣∣∣∣ {z}!∏4
j=1{z − Tj}!

∏3
k=1{Qk − z}!

∣∣∣∣∣+O(log r).

Here we used that the sum S is a sum of a polynomial number of terms and that for
0 6 z 6 r − 2, we have log |{z + 1}| 6 O(log r) for some O(log r) independent on z.
To estimate these terms we will use Proposition 4.1. We will write

Ai =
2πai
r

, Uj =
2πTj
r

, and Vk =
2πQk
r

.

We have

(5) log

(
evr

∣∣∣∣a1 a2 a3

a4 a5 a6

∣∣∣∣ )
6

r

2π

(
v(
A1

2
,
A2

2
,
A3

2
) + v(

A1

2
,
A5

2
,
A6

2
) + v(

A2

2
,
A4

2
,
A6

2
) + v(

A3

2
,
A4

2
,
A5

2
)

)
+

r

2π
max
Z

g(Z,Ai) +O(log r),

where

v(α, β, γ) =
1

2
(Λ (α+ β + γ)− Λ (β + γ − α)− Λ (α+ γ − β)− Λ (α+ β − γ)) ,

and

g(Z,Ai) =
4∑
i=1

Λ(Z − Ui) +
3∑
j=1

Λ(Vi − Z)− Λ(Z).

Since the function Λ is bounded, the functions v and g also and thus

log

(
evr

∣∣∣∣a1 a2 a3

a4 a5 a6

∣∣∣∣ ) 6 r

2π
C1 +O(log r),



14 RENAUD DETCHERRY AND EFSTRATIA KALFAGIANNI

for some constant C1. We show that one can use C1 = v8 + 8Λ
(
π
8

)
by computing the

maximum of functions v and g above. This is done using the following lemma that we will
prove in the Appendix.

Lemma 4.4. The maximum of the function v is
v8

4
and the maximum of the function g is

8Λ
(π

8

)
�

4.3. LTV and state-sums. Using state sums for the Turaev-Viro invariants and Proposi-
tion 4.2 we prove Theorem 1.2 stated in the Introduction.

Theorem 1.2. Suppose that M is a compact, oriented manifold with a triangulation con-
sisting of t tetrahedra. Then, we have

LTV (M) 6 2.08 v8 t,

where v8 ' 3.6638.. is the volume of a regular ideal octahedron.

Proof. Let τ be a triangulation of M with t tetrahedra. Recall that by equation (4) in the
statement of Theorem 3.2

TVr(M) = 2b2−b0 η2|V |
r

∑
c∈Ar(τ)

∏
e∈E
|e|c

∏
∆∈τ
|∆|c.

Since the term 2b2−b0 is independent of r we may ignore it. Recall that Ar(τ) is the set
of admissible r-colorings of the edges of the triangulation τ . The number of elements of the
set Ar(τ) is bounded by a polynomial in r as each edge must be colored by an element of
{0, 2, . . . r − 3}. So

2π

r
log |TVr(M)| 6 2π

r
log (|Ar(τ)||P |) 6 2π

r
log |P |+O(

log r

r
),

where P is the term in the sum of maximal log . Moreover,

log |ηr| = log

∣∣∣∣∣2 sin(2π
r )

√
r

∣∣∣∣∣ = O(log r),

and for the factors |e|c we have:

log |e|c = log

∣∣∣∣∣sin(2π(c(e)+1)
r )

sin(2π
r )

∣∣∣∣∣ = O(log r).

Finally, by Proposition 4.2, for any c ∈ Ar(τ) and any ∆ ∈ τ, the factor 2π
r log |∆|c is

bounded above by C1 = v8 + 8Λ
(
π
8

)
' 7.5914 < 7.6207 ' 2.08v8 and P has t such factors.

The theorem follows. �
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5. Cutting along tori

In this section, we will prove a theorem (Theorem 5.2 below) that describes the behavior
of the Turaev-Viro invariants when cutting along a torus. This will follow from the TQFT
properties of TVr and Cauchy-Schwarz type inequalities. We will need the lemma.

Lemma 5.1. Let v1, v2, . . . , vn be vectors in the C-vector space V with positive definite
Hermitian form 〈·, ·〉 and norm || · ||. Then we have

||
n∑
i=1

vi||2 6 n
n∑
i=1

||vi||2.

Proof. Let e1, . . . , ed be an orthonormal basis of Span(v1, . . . , vn) and write

vi =
d∑
j=1

λijej .

Then

||
n∑
i=1

vi||2 =

d∑
j=1

|
n∑
i=1

λij |2 6
d∑
j=1

n

n∑
i=1

|λij |2 = n

n∑
i=1

||vi||2,

where the inequality follows from the Cauchy-Schwarz inequality in Cn. �

Theorem 5.2. Let r > 3 be an odd integer and let M be a compact oriented 3-manifold with
empty or toroidal boundary. Let T ⊂ M be an embedded torus and let M ′ be the manifold
obtained by cutting M along T. Then

TVr(M) 6

(
r − 1

2

)
TVr(M

′),

and

LTV (M) 6 LTV (M ′).

If moreover T is separating then TVr(M) 6 TVr(M ′).

Proof. Let Σ = ∂M . We will distinguish two cases:

Case 1: Suppose that the torus T is non-separating. The torus T inherits an orienta-
tion from that of M . The manifold M ′, obtained by cutting M along T , has boundary
∂M ′ = Σ

∐
T
∐
T , where T is the torus T with opposite orientation. With the notation of

Theorem 3.4, we have RTr(M
′) ∈ Vr(∂M ′) = Vr(Σ)⊗ Vr(T )⊗ Vr(T ) and RTr(M) ∈ Vr(Σ).

Furthermore RTr(M) = Φ(RTr(M
′)), where Φ is the the contraction map of Theorem

3.4(6): We have Φ : Vr(Σ)⊗ Vr(T )⊗ Vr(T )→ Vr(Σ), where

Φ(v ⊗ w1 ⊗ w2) = 〈w1, w2〉v.

By Theorem 3.7, we have

TVr(M
′) = 〈RTr(M ′), RTr(M ′)〉 = ||RTr(M ′)||2 and TVr(M) = ||RTr(M)||2.

By hypothesis, Σ is a (possibly empty) union of, say n, tori; thus we have Vr(Σ) =

Vr(T
2)⊗n and Vr(∂M

′) = Vr(T
2)⊗(n+2). By Theorem 3.6 the Hermitian form on Vr(T

2)
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is definite positive. Hence, setting m = r−1
2 , we have an orthonormal basis (ϕi)16j6m on

Vr(T
2). Using this basis we can write

RTr(M
′) =

∑
16i,j6m

vij ⊗ ϕi ⊗ ϕj ,

where the vij are vectors in Vr(Σ) which is also an Hermitian vector space with definite
positive Hermitian form. We have that

(6) TVr(M
′) = ||RTr(M ′)||2 =

∑
16i,j6m

||vij ||2

as ϕi ⊗ ϕj is an orthonormal basis of Vr(T ) ⊗ Vr(T ). On the other hand, applying the
contraction map Φ, we get:

RTr(M) = Φ(RTr(M
′)) =

∑
16i,j6m

〈ϕi, ϕj〉vij =
∑

16i6m

vii,

as ϕi is an orthonormal basis of Vr(T ). Thus

TVr(M) = ||RTr(M)||2 =

∣∣∣∣∣
∣∣∣∣∣ ∑
16i6m

vii

∣∣∣∣∣
∣∣∣∣∣
2

6 m
∑

16i6m

||vii||2 6 m
∑

16i,j6m

||vij ||2 = mTVr(M
′),

where the first inequality follows from Lemma 5.1 and the last equality from Equation (6).
This proves the first part of Theorem 5.2.

Case 2: Let T be a separating torus and let M1 and M2 be the two components of MrT.
Let us write ∂M1 = T ∪ Σ1 and ∂M2 = T ∪ Σ2, where Σ1 and Σ2 are actually (possibly
empty) unions of tori. By Theorem 3.6 the natural Hermitian form on Vr(Σ1) and Vr(Σ2),
are positive definite. Hence we have orthonormal bases (ϕi)i and (ψj)j orthonormal basis

of Vr(Σ1) and Vr(Σ2), respectively. We can write:

RTr(M1) =
∑
i

vi ⊗ ϕi,

where the vi are vectors in Vr(T ) and

RTr(M2) =
∑
j

wj ⊗ ψj ,

where the wj are vectors in Vr(T ). From this we get

TVr(M1) = ||RTr(M1)||2 =
∑
i

||vi||2,

and likewise

TVr(M2) = ||RTr(M2)||2 =
∑
j

||wj ||2.
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On the other hand, one has

TVr(M) = ||RTr(M)||2 = ||
∑
i,j

〈vi, wj〉ϕi ⊗ ψj ||2 =
∑
i,j

|〈vi, wj〉|2

6
∑
i,j

||vi||2||wj ||2 = TVr(M1)TVr(M2),

by the Cauchy-Schwarz inequality. �

As a special case of this theorem we get the following.

Corollary 5.3. Let M ′ be a compact oriented 3-manifold with non-empty toroidal boundary
and let M be a manifold obtained from M ′ by Dehn-filling some of the boundary components.
Then

TVr(M) 6 TVr(M
′),

and thus

LTV (M) 6 LTV (M ′).

Proof. Suppose we are Dehn filling n components of ∂M ′. The Dehn filling M is obtained
from M ′

∐n
i=1 Vi by gluing the boundary of each solid torus Vi = D2 × S1 to a boundary

component of M ′. We can do the Dehn filling one component at a time. Thus Corollary
5.3 is an immediate consequence of Theorem 5.2, the multiplicativity of TVr under disjoint
union and the fact that

TVr(D
2 × S1) = RTr(S

2 × S1) = 1.

�

6. Bounds for Seifert manifolds

The previous section showed that the Turaev-Viro invariants are well behaved with re-
spect to 3-manifold decompositions along tori. In this section we deal with large r asymp-
totic behavior of Turaev-Viro invariants for Seifert manifolds. We will use Corollary 5.3 to
show the TVr invariants of Seifert manifolds are at most polynomially growing. Our argu-
ment will be slightly different depending on whether the Seifert manifold has orientable or
non-orientable base. The following lemma will help us reduce the latter to the former.

Lemma 6.1. Let Σ̃ be a compact non-orientable surface. Then there is a simple closed
curve γ on Σ̃ that is orientation reversing such that the surface Σ = Σ̃rγ obtained from Σ̃
by cutting along γ is orientable.

Proof. Without loss of generality, we can assume Σ̃ is closed. Otherwise, we can fill the
boundary components by disks to get a closed surface Σ̃′, and a simple closed curve for Σ̃′

that cuts it into an orientable surface. Isotopying this curve away from the filled in disks
on Σ̃′ we will get a curve that satisfies the conclusion of the lemma for Σ̃.

Now, as closed non-orientable surfaces are characterized by their Euler characteristic
which is at most 1, the surface Σ̃ is homeomorphic either to some RP 2#(#T 2)p or to some
K2#(#T 2)p where K2 is the Klein bottle and p > 0. As T 2 is orientable, it will then be
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sufficient to find such a path in RP 2 and K2. In RP 2 such a path is given by the image of
the diameter in S2 by the cover map. If we view the Klein bottle K2 as

K2 ' S1 × [0, 1]/(x,1)∼(−x,0),

then the path S1 × {0} works. �

We are now ready to bound the Turaev-Viro invariants of Seifert fibered manifolds.

Theorem 6.2. Let M be a compact orientable manifold that is Seifert fibered. Then there
exist constants A > 0 and N > 0, depending on M , such that

TVr(M, e
2iπ
r ) 6 ArN .

Thus we have LTV (M) ≤ 0.

Proof. We treat the case of orientable and non-orientable base separately.

Case 1: Let us first assume that the base of M is orientable. Drilling out exceptional
fibers and possibly one regular fiber, we obtain a Seifert manifold which is a locally trivial
fiber bundle over an oriented surface with non-empty boundary Σg,n. Here, n > 1 is the
number of boundary components of Σg,n and g is the genus. Because H2(Σg,n,Z) = 0, the
Euler number of the fibration is zero and the S1-fibration is globally trivial. In the end, M
is a Dehn-filling of Σg,n×S1 for some oriented surface Σg,n of genus g and n > 1 boundary
components.

By Corollary 5.3, we have TVr(M) 6 TVr(Σg,n × [0, 1]). It remains to show that
TVr(Σg,n × S1) is bounded by a polynomial. By Theorem 3.7, we have that

TVr(Σg,n × S1) = RTr(D(Σg,n × S1)) = RTr(D(Σg,n)× S1).

The double surface D(Σg,n) is a closed orientable surface with χ(D(Σg,n)) = 2χ(Σg,n) =
4− 4g − 2n; thus it is the surface Σ2g+n−1 of genus 2g + n− 1. So that we have

TVr(Σg,n × S1) = RTr(Σ2g+n−1 × S1) = Tr(ρr(idΣ2g+n−1)) = dim(Vr(Σ2g+n−1)),

where ρr is the quantum representation of Vr(Σ2g+n−1). The last quantity is a polynomial
by Theorem 3.6(2).

Case 2: Assume that the base of M is a non-orientable surface Σ̃. By Lemma 6.1, we
have a simple closed curve γ on Σ̃ such that Σ = Σ̃rγ is orientable. One can assume that
γ does not meet any exceptional fiber up to isotopying γ. The fibers of M corresponding
to points on γ form an embedded Klein bottle K2 in M . As γ is orientation reversing and
does not meet exceptional fibers, a regular neighborhood of γ in Σ̃ will be a Möbius band
that does not meet the exceptional fibers, and its total space by the Seifert fibration will
be homeomorphic to the twisted I-bundle over the K2.

K2×̃I = [0, 1]× S1 × [−1, 1]/(1,y,z)∼(0,−y,−z).

The boundary of K2×̃I is a separating torus in M and, cutting M along this torus, one
obtains on one side a Seifert manifold M ′ that fibers over the orientable surface Σ and
K2×̃I on the other side.

By Theorem 5.2, TVr(M) 6 TVr(M ′)TVr(K2×̃I).
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We already know that TVr(M
′) is bounded by a polynomial so we only need to discuss

TVr(K
2×̃I). By Theorem 3.7 again, we have that TVr(K

2×̃I) = RTr(D(K2×̃I)). The
double of K2×̃I is:

D(K2×̃I) = [0, 1]× S1 × S1
/(1,y,z)∼(0,−y,−z).

This is the mapping torus of the elliptic involution s over T 2. Thus we have that

TVr(K
2×̃I) = Tr(ρr(s)) = dim(Vr(T

2)) =
r − 1

2
,

as the elliptic involution is in the kernel of all quantum representations ρr by Lemma 3.5. �

7. Turaev-Viro invariants and simplicial volume

7.1. A universal bound. In this section we complete the proof of Theorem 1.1 and deduce
some corollaries. First we note the following elementary properties of LTV and lTV .

Proposition 7.1. LTV is subadditive under disjoint unions and connected sums of 3-
manifolds while lTV is superadditive.

Proof. By Theorems 3.4 and 3.7 the Turaev-Viro invariants are multiplicative under disjoint
union. Thus we have TVr(M

∐
M ′) = TVr(M)TVr(M

′). and

lim sup
r→∞

2π

r
log |TVr(M

∐
M ′)| = lim sup

r→∞

2π

r

(
log |TVr(M)|+ log |TVr(M ′)|

)
6 LTV (M) + LTV (M ′)

as the lim sup operator is subadditive.
For a connected sum, we have

TVr(M#M ′) =
TVr(M)TVr(M

′)

TVr(S3)
= η−2

r TVr(M)TVr(M
′).

But we have

log |ηr|
r

=
log |2 sin( 2π

r
)√

r
|

r
= O(

log r

r
).

So subadditivity of TVr under connected sum follows again from the subadditivity of
lim sup . The claims about lTV follow similarly as lim inf is superadditive. �

We are now ready to finish the proof of the main result of the paper that was stated as
Theorem 1.1 in the introduction. We slightly restate the theorem.

Theorem 1.1. There exists a universal constant C such that for any compact orientable
3-manifold M with empty or toroidal boundary we have

LTV (M) 6 C||M ||,
where the constant C is about 8.3581× 109.

Proof. As both LTV (M) is subadditive and ||M || additive under disjoint union and con-
nected sum, it is enough to prove it for prime manifolds. As TVr(S

2 × S1) = 1 and
||S2 × S1|| = 0, we can ignore S2 × S1 factors.
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Next we treat the case of hyperbolic manifolds. By Theorem 2.4, if M is hyperbolic, there
is a link L in M such that MrL admits a triangulation with at most C2||M || tetrahedra,
where C2 is the universal constant defined in 2.3. By Corollary 5.3 and Proposition 1.2, we
have

LTV (M) 6 LTV (MrL) 6 C1C2||M ||.
Setting C = C1C2 we recall that C1 has been estimated to be less than 1.101 × 109 in
Subsection 2.3. Furthermore C1 = v8 + 8Λ

(
π
8

)
which is about 7.5914. Thus the constant

C = C1C2 is about 8.3581× 109.
By Theorem 6.2, LTV (M) = 0, if M is a Seifert fibered manifold. As M is a Dehn-filling

of Σ × S1 for some surface with boundary Σ, its Gromov norm is 0 as ||Σ × S1|| = 0 by
Theorem 2.2. Thus the result is true in this case.

Now suppose that M is any compact, oriented 3-manifold that is closed or has toroidal
boundary. By the Geometrization Theorem there is a collection of essential, disjointly
embedded tori in T = {T1, . . . , Tn} in M , such that such that all the connected components
of MrT are either Seifert fibered manifolds or hyperbolic. By the above discussion the
result is true for each component of MrT . The simplicial volume is additive over the
components of MrT (Theorem 2.2).
By Proposition 7.1, LTV is subadditive over the components of MrT . Applying Theorem
5.2 inductively we get

LTV (M) 6 LTM(MrT ) 6 C||MrT || = C||M ||,

where C = C1C2 is about 8.3581× 109. This concludes the proof of Theorem 1.1. �

Next we discuss lower bounds for the Turaev-Viro invariants.

Corollary 7.2. Let M,M ′ be compact, oriented 3-manifolds with empty or toroidal bound-
ary and such that M is obtained by Dehn filling from M ′ and suppose that lTV (M) > 0.
Then we have

lTV (M ′) > lTV (M) > 0.

Proof. SinceM is obtained by Dehn filling fromM ′, Corollary 5.3 gives TVr(M) 6 TVr(M ′),
and thus lTV (M ′)) > lTV (M). �

Corollary 7.2 applies in particular when M ′ is a knot complement in M ; this application
also gives the proof of Corollary 1.3.

Proof. (of Corollary 1.3) Let K ⊂ S3 be the figure-8 knot or the Borromean rings. By [10,
Corollary 5.2], for MK = S3rK, we have lTV (MK) = v3||MK || = vol(MK) > 2v3, where
the last inequality follows from the fact that the volume of the figure-8 knot complement is
2v3 while the volume of the Borromean rings complement is 2v8.
If L is a link in S3 that contains K, then MK is obtained by Dehn filling from ML = S3rL.
By Corollary 7.2 we have lTV (ML) > 2v3. �

Removing solid tori from a 3-manifold can also be thought as a special case of removing a
Seifert fibered sub-manifold. This generalized operation also preserves exponential growth
of the TVr.
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Corollary 7.3. Let M be a compact oriented 3-manifold such that TVr(M) grows exponen-
tially, that is lTV (M) > 0. Assume that S is a Seifert manifold embedded in M. Then

lTV (MrS) > lTV (M) > 0.

Proof. Note that ∂S consists of n > 1 tori. By Theorem 5.2,

TVr(M) 6

(
r − 1

2

)n
TVr(MrS)TVr(S).

But by Theorem 6.2, there are constants A > 0 and N such that TVr(S) 6 ArN . Thus

TVr(MrS) > A′r−N
′
TVr(M)

for some constants A′ > 0 and N ′, and lTV (MrS) > lTV (M) > 0. �

7.2. Sharper estimates and Dehn filling. In this section, we will results of Futer, Kalfa-
gianni and Purcell [15] to obtain much sharper relations between LTV and volumes of
hyperbolic link complements. We will also address the question of the extent to which rela-
tions between Turaev-Viro invariants of hyperbolic volume survive under Dehn filling. To
state our results we need some terminology that we will not define in detail. For definitions
and more details the reader is referred to [14].

Over the years there has been a number of results about coarse relations between di-
agrammatic link invariants and the volume of hyperbolic links. See [14] and references
therein. Using such results we obtain sharper bounds than the one of Theorem 1.1.

A twist region in a diagram is a portion of the diagram consisting of a maximal string
of bigons arranged end-to-end, where maximal means there are no other bigons adjacent to
the ends. We require twist regions to be alternating. The number of twist regions is the
twist number of the diagram, and is denoted tw(D).

For a link L in S3 with a diagram D with tw(D) twist regions, the augmented link L′ of
L is obtained by adding a crossing circle around each twist region and replacing the twist
region by two parallel strands. See, for example, [14, figure 2]. The complement of L can
be obtained from the complement of L′ by Dehn-filling along the boundary components
corresponding to the crossing circles.

Theorem 7.4. Let L be a link S3, that admits a prime, twist reduced diagram1 D with
tw(D) > 1, and such that each twist region has at least n ≥ 7 crossings. Then L is
hyperbolic and we have

LTV (S3rL) 6 10.4

(
1−

(
2π√
n2 + 1

)2
)−3/2

vol(S3rL).

Proof. By a result of Agol and D. Thurston [20, Appendix]) the complement of the aug-
mented link L′ obtained from D, has a triangulation with at most 10(tw(D) − 1) ideal
tetrahedra. Thus by Theorem 1.2

LTV (S3rL′) 6 (2.08) · 10v8 (tw(D)− 1) = (10.4) · 2v8 (tw(D)− 1).

1Every prime knot has prime twist reduced diagrams
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The complement of the link L is obtained by Dehn-filling from S3rL′. In fact, Futer and
Purcell [16, Theorem 3.10] show that if each twist of D has at least n crossings, then all

the filling slopes for the Dehn-filling from S3rL′, to S3rL, have length at least
√
n2 + 1.

Suppose that the diagram D of L has at least n crossings per twist region for some n ≥ 7.
Then by [15, Theorem 1.2] and its proof, we have

2 v8(tw(D)− 1)) 6

(
1−

(
2π√
n2 + 1

)2
)−3/2

vol(S3rL).

By Corollary 5.3, we have

LTV (S3rL) 6 LTV (S3rL′).

Now combining the three last inequalities we get the desired result.
�

Remark 7.5. Theorem 7.4 says that for most links we have LTV (S3rL) 6 10.5 vol(S3rL):
Indeed, for links which at least n twists per twist region as above, for n large enough
the inequality is satisfied. Then for every B > 0, for links L that admit diagrams with
tw(D) ≤ B, for a generic choice of the number of twists in each twist region, the inequality
is satisfied.

To continue, let M be a compact 3-manifold with toroidal boundary whose interior is hy-
perbolic, and let T1, . . . , Tk be some components of ∂M . On each Ti, choose a slope si, such
that the shortest length of any of the si is `min > 2π. Then the manifold M(s1, . . . , sk) ob-
tained by Dehn filling along s1, . . . , sk is hyperbolic and [15, Theorem 1.1] gives a correlation
between its volume and the volume of M .

The next result provides some information on how relations between Turaev-Viro invari-
ants and hyperbolic volume behave under Dehn filling.

Corollary 7.6. Let M be a compact 3-manifold with toroidal boundary whose interior is
hyperbolic and let the notation be as above. Suppose that LTV (M) = vol(M). For `min > 2π
we have

LTV (M(s1, . . . , sk)) 6 B(`min) vol(M(s1, . . . , sk)),

where B(`min) is a function that approaches 1 as `min →∞.

Proof. Since `min →∞, Theorem [15, Theorem 1.1] applies to give(
1−

(
2π

`min

)2
)3/2

vol(M) 6 vol(M(s1, . . . , sk)).

Combining the last inequality with Corollary 5.3 we have

LTV (M(s1, . . . , sk)) 6 LTV (M) = vol(M) 6

(
1−

(
2π

`min

)2
)−3/2

vol(M(s1, . . . , sk)).

�



GROMOV NORM AND TURAEV-VIRO INVARIANTS OF 3-MANIFOLDS 23

By [10, Theorem 1.6] if M is the complement of the figure-8 knot or the Borromean rings
B we have LTV (M) = vol(M). Let Kn denote the double twist knot obtained by 1/n-filling
along each of two components of B. By Corollary 7.6, for any constant E arbitrarily close
to 1, there is n0 so that LTV (S3rKn) 6 E vol((S3rKn) whenever n > n0.

8. Exact calculations of Gromov norm from Turaev-Viro invariants

In this section we give two examples of families of manifolds M such the growth rate of
Turaev-Viro invariants detects the Gromov norm ||M || exactly. Both examples are derived
as applications of the results in Section 5, 6 and 7. Both results provide partial verification
of the following.

Conjecture 8.1. (Turaev-Viro invariants volume conjecture, [6]) For every compact ori-
entable 3-manifold M, with empty or toroidal boundary, we have

LTV (M) = lim sup
r→∞

2π

r
log |TVr(M)| = v3||M ||,

where r runs over all odd integers.

A stronger version of conjecture 8.1 was first stated by Chen and Yang [6] for hyperbolic
manifolds only and was supported by experimental evidence. The version above, which is
the natural generalization of the conjecture in [6] was stated in [10] for links in S3, where the
authors and Yang also gave the first examples where the conjecture is verified. In particular,
they proved it for knots in S3 of simplicial volume zero. Here, as a corollary of Theorem
1.1 and Corollary 5.3 we generalize this later result as follows.

Corollary 8.2. Suppose that M is a compact, orientable 3-manifold with lTV (M) > 0.
Then, for any link K ⊂M with ||MrK|| = 0, we have

lTV (M) = LTV (M) = lim
r→∞

2π

r
log |TVr(MrK)| = v3||MrK|| = 0,

where r runs over all odd integers. That is Conjecture 8.1 holds for MrK.
In particular, the conclusion holds if M = S3 or #(S1 × S2)k.

Proof. By Theorem 1.1, LTV (MrK) 6 0. By Corollary 5.3,

TVr(M) 6 TVr(MrK),

and thus 0 6 lTV (M) 6 LTV (MrK) 6 0. Thus the conclusion follows.

The claim about S3 or #(S1 × S2)k follows since, as it is easily seen by Theorem 3.4(2),
we have lTV (S3), lTV (S1 × S2) > 0, and lTV is superadditive under connected sums. �

To describe our second family of examples, we introduce an operation we call invertible
cabling that leaves both the Gromov norm and the growth rate of Turaev-Viro invariants
unchanged.

Definition 8.3. A manifold S, with ||S|| = 0 and with a distinguished torus boundary com-
ponent T , is called an invertible cabling space if there is a Dehn-filling on some components
of ∂SrT that is homeomorphic to T × [0, 1].
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A way to obtain invertible cabling spaces is to start with a link L in a solid torus such
that L contains at least one copy of the core of the solid torus. One example of such a
cabling space S is the complement in a solid torus of p > 2 parallel copies of the core.

Using Corollary 5.3 we also show the following:

Corollary 8.4. Let M a 3-manifold with toroidal boundary for which Conjecture 8.1 holds
and S be an invertible cabling space. Let M ′ be obtained by gluing a component of ∂SrT
to a component of ∂M. Then LTV (M) = lTV (M) = lTV (M ′) = LTV (M ′), and thus
Conjecture 8.1 holds for M .

Proof. As there is a Dehn-filling on components of ∂SrT that is homeomorphic to T×[0, 1],
M is a Dehn-filling of M ′ and TVr(M) 6 TVr(M ′) by Corollary 5.3.
On the other hand, M ′ is obtained by gluing S to M along a torus. By Corollary 5.3 again,

TVr(M
′) 6 TVr(M)TVr(S).

But as S has volume 0, by Theorem 6.2, we know that there exists constants A and N such
that

TVr(S) 6 ArN .

On the other hand, we also have that ||M ′|| = ||M ∪
T
S|| 6 ||M ||+ ||S|| = ||M || by Theorem

2.2, and also ||M || 6 ||M ′|| as M is a Dehn-filling of M ′. Thus M and M ′ have the same
simplicial volume too. �

Corollary 8.4 applies in particular for M the complement of the figure-8 knot or to links
with complement homeomorphic to the complement of the Borromean rings.

Appendix A. Proof of Lemma A.1

We prove Lemma A.1 from which we got the upper bound for 6j-symbols in Section 4.2.

Lemma A.1. The maximum of the function v is
v8

4
and the maximum of the function g

is 8Λ
(π

8

)
Proof. The function v is differentiable and π-periodic in all variables, so such a maximum

exists and is a critical point of v. Computing the partial derivatives
∂v

∂α
,
∂v

∂β
, and

∂v

∂γ
, we

see that (α, β, γ) is a critical point of v if and only if

1 −1 −1 1
1 −1 1 −1
1 1 −1 1




Λ′(α+ β + γ)
Λ′(α+ β − γ)
Λ′(α+ γ − β)
Λ′(β + γ − α)

 = 0.
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The matrix

1 −1 −1 1
1 −1 1 −1
1 1 −1 1

 has rank 3 and kernel Vect


1
1
1
1

 , hence (α, β, γ) is a critical

point of v if and only if

Λ′(α+ β + γ) = Λ′(α+ β − γ) = Λ′(α+ γ − β) = Λ′(β + γ − α),

which given that Λ′(x) = − log(|2 sinx|) is equivalent to

| sin(α+ β + γ)| = | sin(α+ β − γ)| = | sin(α+ γ − β)| = | sin(β + γ − α)|.

This means that the angles α+β+γ, α+β−γ, α+γ−β and β+γ−α are all equal or opposite
mod π. Let us write x = α+β+ γ = ±(α+β− γ) = ±(α+ γ−β) = ±(β+ γ−α)(mod π).

Given that Λ is π periodic and odd, at such a critical point we have v(α, β, γ) = n
2 Λ(x)

where n is an even integer between −2 and 4. Moreover we have v(α, β, γ) = 2Λ(x) if and
only if

α+ β + γ = −(α+ β − γ) = −(α+ γ − β) = −(β + γ − α)(mod π).

This system is equivalent to α = 0(mod
π

4
) and β = γ = α(mod

π

2
). We then see that the

maximal value of v at such a critical point is 2Λ
(π

4

)
=
v8

4
. This value is obtained for

α = β = γ =
3π

4
or if two of the angles α, β, γ are equal to π

4 and the last one is 3π
4 .

For other critical points, where v(α, β, γ) =
n

2
Λ(x) with |n| 6 2, the value of v is bounded

by Λ
(π

6

)
as Λ

(π
6

)
=

3

2
Λ
(π

3

)
=
v3

2
is the maximum of Λ.

But we have that v3 ' 1, 01494 . . . <
v8

2
= 1.83419 . . .. So the maximum of v is

v8

4
.

Similarly, we see that (Z,A1, A2, A3, A4, A5, A6) is a critical point of g if and only if

−1 1 1 1 1 −1 −1 −1
0 −1 −1 0 0 1 1 0
0 −1 0 −1 0 1 0 1
0 −1 0 0 −1 0 1 1
0 0 0 −1 −1 1 1 0
0 0 −1 0 −1 1 0 1
0 0 −1 −1 0 0 1 1





Λ′(Z)
Λ′(Z − U1)
Λ′(Z − U2)
Λ′(Z − U3)
Λ′(Z − U4)
Λ′(V1 − Z)
Λ′(V2 − Z)
Λ′(V3 − Z)


= 0.

The matrix



−1 1 1 1 1 −1 −1 −1
0 −1 −1 0 0 1 1 0
0 −1 0 −1 0 1 0 1
0 −1 0 0 −1 0 1 1
0 0 0 −1 −1 1 1 0
0 0 −1 0 −1 1 0 1
0 0 −1 −1 0 0 1 1


has rank 7 and kernel Vect



1
1
1
1
1
1
1
1


.
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Hence (Z,A1, A2, A3, A4, A5, A6) is a critical point of g if and only if

Λ′(Z) = Λ′(Z − U1) = Λ′(Z − U2) = Λ′(Z − U3) = Λ′(Z − U4)

= Λ′(V1 − Z) = Λ′(V2 − Z) = Λ′(V3 − Z),

which is equivalent to

Z = ±(Z − U1) = ±(Z − U2) = ±(Z − U3) = ±(Z − U4)

= ±(V1 − Z) = ±(V2 − Z) = ±(V3 − Z)(mod π).

As above, the function being π-periodic and odd, at such a critical point we will have

g(Z,A1, A2, A3, A4, A5, A6) = −nΛ(Z),

with n an even integer between −6 and 8. Furthermore, n = 8 if and only if we have

Z = −(Z − Ui) = −(Vj − Z) (mod π).

From this we get Ui = 2Z (mod π) and Vj = 0 (mod π). But, as

U1 + U2 + U3 + U4 = V1 + V2 + V3,

we have that 8Z = 0 (mod π).

Finally, as Λ
(π

8

)
' 0.490936 > 0.457982 ' Λ

(π
4

)
and

8Λ
(π

8

)
' 3.927488 > 3v3 = 6Λ

(π
6

)
' 3, 0448,

the maximum value of g is 8Λ
(π

8

)
.

Notice that this maximum is attained for Z =
7π

8
and either all Ai =

π

4
, or all Ai are

equal to
3π

4
mod π, except two corresponding to opposite edges in the tetrahedron which

are equal to
π

4
. �
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