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Abstract

This paper exposes an explicit mapping between the TQFT vector spaces Vr(Σ)

de�ned combinatorially by Blanchet-Habegger-Masbaum and Vogel and spaces of holo-

morphic sections of complex line bundles on some Kähler manifold, following the ap-

proach of geometric quantization. We explain how curve operators in TQFT can then

be seen as Toeplitz operators with symbols corresponding to some trace functions. As

an application, we show that eigenvectors of these operators are concentrated near

the level sets of these trace functions, and obtain asymptotic estimates of pairings of

such eigenvectors. This yields under some genericity assumptions an asymptotic for

the matrix coe�cients of the images of mapping classes by quantum representations.

1 Introduction

The study of topological quantum �eld theories (or TQFT) was developed after Witten

used the Jones polynomial to heuristically de�ne a collection of invariants of 3-manifolds,

cobordisms, surfaces and mapping class on surfaces, satisfying some axioms, including some

compatibility with gluings or disjoint union, and gave the expected asymptotic expansion

of these 3-manifold invariants, in what is known as the Witten conjecture.

Later, these TQFT were constructed more rigorously by Reshetikhin and Turaev in [RT],

and later by Blanchet, Masbaum, Habegger and Vogel in [BHMV], in the case where the

gauge group is G = SU2, using skein calculus. This second approach, more combinatorial,

is the one we use in the following paper.

To each compact oriented surface Σ is associated by the TQFT a sequence of Hermitian

vector spaces Vr(Σ), parametrized by an integer r called level, to each pair of pants decom-

position a basis (ϕα)α∈Ir of Vr(Σ), and to each simple closed curve on Σ a curve operator

T γr ∈ End(Vr(Σ)). The goal of this paper is to compute the asymptotic behavior of pairings

〈ϕα, ψβ〉 of basis vectors corresponding to two pants decomposition when the level goes to

in�nity.

A helpful tool to study asymptotics of quantum invariants is the theory of geometric quanti-

zation. Given a Kähler manifold (M,ω, J) with dim(M) = 2n, we de�ne a prequantization

bundle as a complex line bundle with an Hermitian form h that has Chern curvature
1
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and a half-form bundle, that is a square root of the bundle of complex n-forms. For L a

prequantization bundle and δ a half-form bundle, we have a sequence of (�nite dimensional

when M is compact) vector spaces H0(M,Lr ⊗ δ): the spaces of holomorphic sections of

Lr ⊗ δ.
A natural candidate to present the vector space Vr(Σ) and curve operators T γr as arising

from the geometric quantization of some Kähler manifold and function is the moduli space

M(Σ) = Hom(π1Σ, SU2)/ SU2 of representations of the fundamental group of Σ in SU2

modulo conjugation. This space has a natural symplectic form on it, de�ned by Atiyah

and Bott in [AB82].

Also, in the setting of geometric quantization, to each smooth integrable function f on

M(Σ) is associated a sequence of endomorphisms of H0(M,Lr ⊗ δ) called a Toeplitz op-

erator of symbol f . Curve operators T γr will be represented as Toeplitz operators with

principal symbol the trace functions fγ(ρ) = −Tr(ρ(γ)) which are continuous functions on

M(Σ).

Then, results of microlocal analysis state that the joint eigenvectors of such Toeplitz oper-

ators concentrate on the level sets of their principal symbol. As the TQFT basis (ϕα)α∈Ir

associated to a pair of pants decomposition C of Σ is a basis of common eigenvectors of

curve operators, we get asymptotic estimates of these. In the geometric model, sequences

of vectors ϕαr with
αr
r
→

r→+∞
x should carry most of their mass on a neighborhood of the

set

ΛC−2 cos(πx) = {ρ / Tr(ρ(Ci)) = −2 cos(πxi)}

The �nal goal of this paper is to compute the asymptotic expansion of pairings 〈ϕα, ψβ〉
of basis vectors of Vr(Σ) corresponding to two pants decompositions C and D of Σ. There

are two ways of thinking of these pairings: if one decomposition is the image of the other

by an element of the mapping class group Γg of Σ, what we compute is a limit of matrix

coe�cients of the quantum representations of Γg on Vr(Σ).

Alternatively, the pairings can be viewed as special Reshethikhin-Turaev invariants: choose

two handlebodies, one corresponding to each pants decomposition, insert a trivalent colored

graph in each with colorings α and β, and glue them together to obtain a 3-manifold with

a pair of trivalent-colored graphs inside, which represents some linear combination of links.

The pairing 〈ϕα, ψβ〉 is just the Reshetikhin-Turaev invariant of this manifold with links.

The vectors ϕαr and ψβr concentrate on ΛCEαr and ΛDEβr where E
i
αr = −2 cos(π

αir
r

). Under

some condition of genericity, the Lagrangian ΛCx and ΛDy have a transverse intersection,

consisting only of a �nite number of points, and we show that the pairing 〈ϕαr , ψβr〉 has
an asymptotic expansion consisting of a sum of contributions of these points as follows:

〈ϕαr , ψβr〉 = ur(
r

2π
)−

n
2

1√
Vol(ΛCEαr )Vol(ΛD

E′βr
)

∑
z∈ΛCEαr

∩ΛD
E′
βr

eirη(z0,z)

|det({µi, µ′j})|
1
2

im(z0,z)+O(r−
n
2
−1)
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where we set dim(M(Σ)) = 2n (that is n = 3g−3), ur is a sequence of complex numbers of

moduli 1, the functions µi = −Tr(ρ(Ci)) and µ
′
j = −Tr(ρ(Dj)) are the principal symbols

of TCir and T
Dj
r , {·, ·} is the Poisson bracket inM(Σ), V ol(ΛCEαr ) (resp V ol(ΛDEβr )) is the

volume for the volume form β = dθ1 ∧ . . . ∧ dθn (resp. β′ = dθ′1 ∧ . . . dθ′n) where dθi (resp.
dθ′i) are basis of T ∗ΛCEαr (resp. T ∗ΛDEβr ) dual to the Hamiltonian vector �elds Xi of µi

(resp. X ′i of µ
′
i).

Moreover, z0 is some speci�c point in the �nite intersection, and for z ∈ ΛCEαr ∩ ΛCEαr , if

we choose γz0,z a loop consisting of a path from z0 to z in ΛCEαr and a path from z to z0

in ΛDEβr , then η(z0, z) is the holonomy of the prequantization bundle L along γz0,z. The

line bundle L having curvature
1

i
ω, the quantity η(z0, z) can be de�ned alternatively as

follows: take an oriented disk D(z0, z) in M(Σ) whose boundary is the loop γz0,z. Then

η(z0, z) is its symplectic area: η(z0, z) =

∫
D(z0,z)

ω

Finally, m(z0, z) ∈ Z and is some kind of Maslov index, the computation of which is

explained in Section 5. A path from z0 to z along ΛCEαr induces a path in the oriented

Lagrangian Grassmanian LG+(M(Σ)), similarly for the path from z to z0 in ΛCEβr . We

connect these to get a loop in the oriented Lagrangian Grassmanian by turning "positively"

in the oriented Lagrangian Grassmanian of TzM(Σ) and Tz0M(Σ). The index m(z0, z)

ought to correspond the homotopy class of this loop in π1LG
+(M(Σ)) = Z.

Notice that the de�nition of η(z0, z) depends only on the homotopy class of the loop γz0,z

as the line bundle L is a �at bundle on the Lagrangian ΛCEαr and ΛDEβr . Actually, the quan-

tity rη(z0, z) +
π

2
m(z0, z) will be also independent of this homotopy class modulo 2πZ, as

a result of Bohr-Sommerfeld conditions.

Finally, we note that the �rst term of the asymptotic expansion of this pairing is de�ned

uniquely from the positions of the Lagrangian ΛCEαr and ΛDEβr and the symplectic structure

ofM(Σ), so it does not depend on the complex structure we introduced in the process of

geometric quantization.

The idea of linking curve operators in TQFT to Toeplitz operators originates in the work

of Andersen [And06]. Andersen works in the geometrical viewpoint of TQFT, represent-

ing TQFT vector spaces Vr(Σ) as spaces V σ
r (Σ) of holomorphic sections on the moduli

space depending on the choice of a complex structure σ on Σ, and introduces in [And06]

some Toeplitz operators with trace functions as principal symbols, and shows that they

approximate curve operators at �rst order. This approach proved rapidly fruitful: An-

dersen was able to use these Toeplitz operators to derive the asymptotic faithfulness of

the quantum representations of the mapping class group [And06], as well as other results

[And08][And09][And10].

The geometrical viewpoint of TQFT makes an heavy use of the Hitchin connection to relate

the V σ
r (Σ) for di�erent choices of σ, making the computations quite unexplicit. Thereas,

in this paper, as we are using only the skein-theoretic presentation of TQFT, we are able

to present a simple and explicit isomorphism between Vr(Σ) and holomorphic sections on
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some prequantized manifold M . The drawback is that M is a manifold with boundary,

whereas Andersen is able to work on smooth closed manifolds.

The present paper takes inspiration in the work of Paul and Marché [MP], in which they

showed an asymptotic formula for curve operators on the pointed torus and the four-holed

sphere, then presented curve operators on these two surfaces as Toeplitz operators with

trace functions as principal symbols, and deduced from such a presentation the asymp-

totics of quantum 6j-symbols and coe�cients of the pointed S-matrix.

They also conjectured in [MP] that their results would apply for arbitrary compact ori-

ented surfaces. The author devoted the paper [Det] to the generalization of the �rst part

of their work, proving the conjectured asymptotic formula for curve operators on general

surfaces. We will recall this result in Section 3.1 as it will be needed in further sections.

Finally, after presenting in this paper curve operators on arbitrary surfaces Σ as Toeplitz

operators, we will apply this discussion to compute the asymptotics of some quantum in-

variants.

Since their discovery the asymptotic behavior of the Witten-Reshetikhin-Turaev invari-

ants Zr(M) of 3-manifolds M has been a big object of interest. Using his path integral

description of invariants, Witten conjectured an asymptotic expansion for Zr(M). The

formula for this expansion, �rst mentioned in [Jef92] is:

Zr(M) = (1 +O(r−1))
∑

ρ∈Hom(π1M,SU2)/ SU2

e2iπrCS(ρ)r
h1(ρ))−h0(ρ))

2

√
Tor(M,ρ)Iρ

where CS is the Chern-Simons functional, hi(ρ) = dim(H i(M,Ad(ρ)) are twisted coho-

mology groups of M for the adjoint representation of ρ, Tor is the Reidemeister torsion

and Iρ is a root of unity of order 8, which can be computed using a spectral �ow.

The semi-classical technics of this paper used to compute quantum invariants by count-

ing contributions of intersections of Lagrangians follow the spirit of a series of two papers

by Charles and Marché [CM11a][CM11b]. Their paper establishes that the Reshetikhin-

Turaev invariants of Dehn �llings of the �gure-eight knot satisfy the asymptotic expansion

conjectured by Witten. They used semi-classical analysis: the complement of the �gure-

eight knot, associated by the TQFT to a vector (or "knot state" of the �gure-eight knot)

in Vr(T2) where T2 is the peripheral torus of the �gure-eight knot. The space Vr(T2) was

reinterpreted as a space of holomorphic sections onM(T2) and the knot state was shown

to concentrate on the character variety of the �gure-eight knot complement, allowing them

to compute the Reshetikhin-Turaev invariants of Dehn �llings by adding contributions of

intersections points of this character variety with some Lagrangian ofM(T2).

Other examples of 3-manifolds satisfying the Witten conjecture include many Seifert mani-

folds, as shown by various authors [Jef92][Roz96][LZ99][Hik05][HT01], �nite order mapping
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tori as shown by Andersen [And11] or mapping tori satisfying a transversality condition

by a paper of Charles [Cha10b].

The limits of the papers [CM11a] and [CM11b] is that explicit formulas of colored Jones

polynomial of the �gure-eight knot are used, making their approach di�cult to generalize

to arbitrary knots. Similarly, most other proofs of speci�c cases of the Witten conjecture

also use some explicit computations, and thus have only a narrow range of applications.

Our asymptotic formula is in some sense a generalization of the formula of Witten: we

give the asymptotic expansion of quantum invariants of gluings of two handlebodies with

trivalent colored graphs in it. The Witten conjecture corresponds to the case of trivial

colorings of the trivalent graphs: if we choose a Heegaard decomposition H ∪
Σ
H ′ of M ,

the sum over representations π1M → SU2 is a sum over the intersection points of the sets

of representations π1Σ→ SU2 which can be extended to π1H and π1H
′ respectively. The

Chern-Simons invariants is analog to our functionnal η, and the Reidemeister torsion to

our determinant of the matrix of Poisson bracket. Finally Iρ looks like the Maslov index

in our formula.

However, the proof of our formula fails in the case of trivial colorings of the trivalent

graphs: the Lagrangians of which we consider the intersections have always intersection in

the boundary of M , corresponding to intersections in the singular part ofM(Σ). Further-

more, proper vectors of Toeplitz operators at critical level of the principal symbol are not

well understood.

It is nonetheless possible that this approach could work if we had a deeper understanding

of the singularities ofM(Σ) and the process of geometric quantization in a singular setting.

Acknowledgments: The author would like to thank Julien Marché and Laurent Charles

for many helpful discussions and for their constant support.

2 Overview of the moduli space M(Σ)

2.1 Pants decomposition and Hamiltonian torus action

Let Σ be a closed compact oriented surface. We write M(Σ) = Hom(π1Σ, SU2)/SU2 for

the moduli space of representations of the fundamental group of Σ in SU2 modulo conju-

gation.

The setM(Σ) is then a real algebraic variety. To see this, �rst notice that from the presen-

tation 〈a1, b1, . . . ag, bg|[a1, b1] . . . [ag, bg]〉 of π1Σg the space of representations Hom(π1Σg, SU2)

can be identi�ed with {A1, B1, . . . Ag, Bg ∈ SU2 / [A1, B1] . . . [Ag, Bg] = Id}, which is a

real algebraic variety.

Then as the action of SU2 on Hom(π1Σg, SU2) is algebraic, it is a consequence of geometric

invariant theory that the GIT quotient Hom(π1Σg, SU2)// SU2 is a real algebraic variety.

But SU2 is a compact group, and for a compact group the GIT quotient coincides with
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the geometric quotient Hom(π1Σg, SU2)/ SU2.

Alternatively, this space can be described as the space of su2-connections A ∈ Ω1(Σ, su2)

, such that dA +
1

2
[A ∧ A] = 0 (�atness condition), modulo the gauge action by G =

C∞(Σ, SU2).

The gauge action is given by Ag = gAg−1 + g−1dg for any g ∈ G.
There is a partition of M(Σ) given by the set of conjugacy classes of irreducible repre-

sentations Mirr(Σ) and the set Mab(Σ) of conjugacy classes of abelian representations.

When the surface Σ is of genus g ≥ 2, the algebraic varietyM(Σ) is smooth at [ρ] if and

only if ρ is an irreducible representation.

If the connection A represents ρ, then the tangent space TρM(Σ) at A is then given by all

1-forms α ∈ Ω1(Σ, su2), such that dα + [α ∧ A] = 0, modulo gauge action by Ω0(Σ, su2)

acting by translating α by dξ + [A, ξ], for any ξ ∈ Ω0(Σ, su2).

Furthermore, a natural symplectic structure on Mirr(Σ) was introduced by Atiyah and

Bott [AB82] and then Goldman [Gol]. This symplectic structure depends on a choice of

normalization: for α and β ∈ TAM(Σ) we choose the normalization:

ωA(α, β) =
1

2π

∫
Σ
Tr(α ∧ β)

A pants decomposition of Σ is a family of simple closed curves C = {Ce}e∈E that separate

Σ into a disjoint union of three-holed sphere. We write S for the set of triples (e, f, g) ∈ E3

such that Ce, Cf , and Cg bound a pair of pants in the decomposition. This data gives rise

to an Hamiltonian torus action on M(Σ) by a torus of dimension |E|. Such an action is

characterized by its momentum mapping:

hC : M(Σ) → RE

ρ → hC(ρ)

where the application hC is given by its components:

hCe(ρ) =
1

π
arccos(

Tr(ρ(Ce))

2
)

which have be shown by Goldman [Gol] to be Poisson commuting functions onM(Σ).

The Hamiltonian �ows of these Poisson commuting functions give the action:

RE → M(Σ)

(θe)e∈E → θ · ρ

The momentum mapping hC , and the associated Hamiltonian �ows were described by

Je�rey and Weistmann [JW], and also Goldman [Gol]. We have the following:

Theorem 2.1. [JW] Given a pair of pants decomposition C, the image of the momentum

mapping hC is a polytope P inside RE which consists of all (xe)e∈E ∈ RE such that, if

(e, f, g) ∈ S, then:
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(i) |xf − xg| ≤ xe ≤ xf + xg

(ii) xe + xf + xg ≤ 2

Given a choice of orientation of the curves Ce, the Hamiltonian action of RE onM(Σ)

can actually be lifted to an action on Hom(π1(Σ), SU2) which acts on representations as

follows: we pick a point of Ce as base point of π1Σ. We can also assume up to conjugation

that ρ(Ce) is diagonal. Any element of π1Σ is a product of loops intersecting Ce at most

once.

If the curve Ce is nonseparating the image of such a loop γ by the representation θe · ρ is

ρ(γ) if γ has zero algebraic intersection with Ce.

If the algebraic intersection of γ and Ce is one we set (θe · ρ)(γ) = Uθeρ(γ) where Uθe is

the matrix

(
eiθe 0

0 e−iθe

)
.

These conventions su�ce to de�ne a representation θe·ρ so that the corresponding action on
Hom(π1Σ, SU2) lifts the Hamiltonian action of hCe onM(Σ). If the curve Ce is separating,

we have to conjugate some of these holonomies, see [Gol] for details.

In [JW] the kernel of the action on M(Σ) was computed and shown to be some explicit

lattice 2πΛ in RE . For e ∈ E let ue be the vector in RE such that all components of ue

vanish expect the e-th component which is 1. For v = (e, f, g) ∈ S we also introduce the

vector uv =
ue + uf + ug

2
∈ RE . Note that the same label can appear twice in v = (e, f, g).

Then [JW-prop 5.2] shows that:

Λ = VectZ{(ue)e∈E , (uv)v∈S}

and furthermore the action of T = RE/2πΛ is free on µ−1(P̊ ).

Now, suppose we set ωP =
∑

dxi∧dθi on P̊ ×T . Then ωP is a symplectic form on P̊ ×T .
Given a Lagrangian section s : P →M(Σ) of the momentum map, the map:

ρ : P̊ × T −→ M(Σ)

(x, θ) −→ ρx,θ = θ · s(x)

maps P̊ × T into the open subset µ−1(P̊ ) of M(Σ)). It also follows from the analysis of

�bers of the map µ in [JW] that the subset µ−1(P̊ ) is dense inM(Σ). The condition that

s is a Lagrangian section of µ ensures that µ(ρx,θ) = x and that the parametrization sends

the 2-form
∑
e

dxe ∧ dθe on P̊ × T to the symplectic form ω onM(Σ).

Such a parametrization is called an action-angle parametrization of µ−1(P̊ ), the x-coordinates

are called action coordinates and θ-coordinates are angle coordinates.

3 TQFT and geometric quantization

This section is devoted to the de�nition of TQFT spaces Vr(Σ) associated to each level

r ∈ N∗ and each closed oriented surface Σ, as well as the de�nition of the curve operators
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acting on these spaces. We begin by a quick overview of the combinatorial framework

for TQFT of [BHMV], then we rebuild these objects in a more analytic framework in

Subsection 3.2.

3.1 TQFT spaces and curve operators

In the article [BHMV], a skein-theoretic TQFT structure for Reshetikhin-Turaev is de-

veloped. The TQFT Vr is introduced as a functor from a category of cobordisms to the

category of �nite dimensional C-vector spaces.

More precisely, the functor Vr has the following properties:

- For Σ a compact closed oriented surface, Vr(Σ) is a �nite dimensional vector space,

with a natural Hermitian form 〈·, ·〉.

- ForM a closed compact oriented manifold, Vr(M) = Zr(M) is the level r Reshetikhin-

Turaev invariant of M .

- For M a manifold with boundary Σ, Vr(M) is a vector in the vector space Vr(Σ).

Moreover, if M = M1 ∪
Σ
M2 is the gluing of two manifold with boundary along there

common boundary, then Vr(M) = 〈Vr(M1), Vr(M2)〉

- Finally, if M is a cobordism whose boundary ∂M = (−Σ1) ∪ Σ2 is decomposed into

two parts, and L is a framed link inM , we have that Vr(M,L) ∈ End(Vr(M1), Vr(M2)).

Moreover, the composition of cobordisms is mapped by Vr to the composition of as-

sociated linear maps.

Curve operators, which will play a central role in this paper appear as a special case of

that last construction:

De�nition 3.1. If γ is a simple closed curve on a surface Σ, the curve operator T γr is

Vr(Σ× [0, 1], γ × {1

2
}) ∈ Vr(Σ)

In this section we will give a brief construction of the vector spaces Vr(Σ), the curve

operators T γr . For a full construction of the TQFT Vr, we refer to [BHMV].

For M a 3-manifold and A ∈ C, the Kau�man module K(M,A) of M is the quotient

C-vector space generated by isotopy classes of framed links in M by the two Kau�man

relations (see Figure 1). For example the Kau�man module of S3 is C, and the evaluation

of a link L in S3 is the Kau�man bracket 〈L〉 of L.
IfM = Σ× [0, 1] is a thickened surface, we write simply K(Σ, A) for the Kau�man module

K(Σ × [0, 1], A). The Kau�man module K(Σ, A) has an algebra structure given by the

stacking product: if L and L′ are two links in Σ× [0, 1], by stacking L′ over L we can see

L ∪ L′ as a link inside Σ × [0, 2] ' Σ × [0, 1] and thus as element of K(Σ, A). Extending

by bilinearity, the operation we get is compatible with the Kau�man relations and gives
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= A +A−1

Figure 1: The �rst Kau�man relation relates three links that are identical except in a ball
where they look like the above. The other relation states that any trivial component is
identi�ed with −A2 −A−2

K(Σ, A) the structure of an algebra.

For any compact oriented surface Σg of genus g, let Hg be a handlebody of boundary Σg.

The vector spaces Vr(Σg) are obtained as quotient of the Kau�man modules K(Hg, ζr)

where ζr = −ei
π
2r . More precisely, it is the quotient of this vector space by all negligible

elements:

if L ∈ K(Hg, ζr) and L′ ∈ K(H ′g, ζr) where Hg ∪ H ′g = S3 we have a pairing 〈L,L′〉 ∈
K(S3, ζr) obtained by gluing. We call L a negligible element if this pairing vanishes for all

L′ ∈ K(H ′g, ζr). Let Nr the space of negligible elements in K(Hg, ζr), we then have

Vr(Σg) = K(Hg, ζr)/Nr

Though our de�nition may seem like it depends on the choice of an handlebody Hg, it

follows from [BHMV] that the dimension of Vr(Σg) is independent of this choice.

With this de�nition, for each simple closed curve γ on Σ we can de�ne a curve operator

T γr on Vr(Σ). Indeed, stacking the curve γ above a banded link L in Hg gives us a banded

link γ ∪ L in Hg as Σ × [0, 1] ∪
Σg
Hg ' Hg. This operation is compatible with Kau�man

relations and furthermore it maps negligible elements to negligible elements. Indeed, if

h ∈ K(Hg, ζr) is a negligible element, for any h′ ∈ K(H ′g, A) we have 〈h, h′〉 = 0. The

operator T γr sends h to γ · h, stacking γ over h. When we glue with H ′g, by pushing γ to

the other handlebody, we see that

〈γ · h, h′〉 = 〈h, γ · h′〉 = 0

So the operator T γr is a well de�ned operator on Vr(Σ).

According to [BHMV], Vr(Σ) has a natural Hermitian structure. Furthermore, given a

pair of pants decomposition by curves (Ce)e∈E of Σ, we choose a trivalent banded graph Γ

embedded in Σ with the following properties: First the graph Γ has one trivalent vertex in

each pants of the decomposition. Secondly we require Γ to have one edge e for each curve

Ce of the decomposition with the additional property that the edge e cuts Ce exactly once

and joins the vertex corresponding to the pans on each side of the curve Ce. We will call

such a graph a dual graph to the pair of pants decomposition of Σ.
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Then [BHMV] gave an orthonormal basis of Vr(Σ) as follows: the basis (ϕc) is indexed by

r-admissible colorings of the edges of Γ.

An r-admissible coloring of Γ is an application c : E → N such that ∀(e, f, g) ∈ S

• ce + cf + cg < 2r

• ce + cf + cg is odd

• |ce − cf | < cg < ce + cf

Note that the conditions above di�er slightly from that of [BHMV]: we shifted all colors by

one, which will be convenient later. With this conditions, we must have ce ∈ {1, 2, . . . , r−1}
for all e ∈ E. The vectors ϕc are of norm 1, and are obtained as a speci�c combination

of links in Hg, see [Det] for details. Furthermore, if c is not an r-admissible coloring, by

convention, we set ϕc = 0. We will denote by Ir the set of admissible colorings. We also

denote by I∞ the set of c : E → N satisfying the last two of the three conditions above.

Finally, we will use the following identity which describes the asymptotic behavior of curve

operators:

Theorem 3.1. [Det] Let γ be a simple closed curve on Σ and let Me = ](γ ∩Ce). We also

suppose that Γ is a planar dual graph to a pair of pants decomposition C of Σ. Then there

exist functions F γk indexed by k : E → Z, such that

- F γk is analytic on Vγ = {(x, h) ∈ CE × R+ / (Re(xe) + εeMeh) ∈ P̊ , ∀ε ∈ {±1}E},
where P = hC(M(Σ)) is the image of the momentum map associated to C

- F γk = 0 if there exists e ∈ E such that |ke| > Me. In particular only a �nite number

of F γk are non-zero.

- For any r-admissible coloring c, we have :

T γr ϕc =
∑

k:E→Z

F γk (
c

r
,
1

r
)ϕc+k

- If, for (τ, h) ∈ Vγ and θ ∈ RE/Λ, we set

σγ(τ, θ, h) =
∑

k:E→Z

F γk (τ, h)eikθ

then we have the following asymptotic expansion:

σγ(τ, θ, h) = −Tr(ρτ,θ(γ)) +
h

2i

∑
e∈E

∂2

∂τe∂θe
(−Tr(ρτ,θ(γ)) +O(h2)

where ρτ,θ is a parametrization of h−1
C (P̊ ) by action-angle coordinates. The O(h2) is

uniform on compact subsets of P̊ × RE/Λ

10



Figure 2: A surface of genus 3 with a pair of pants decomposition in red, and a planar
dual graph to this decomposition in blue.

Note that an action-angle coordinate as de�ned in Section 2.1 is unique only up to a shift

in angle coordinates. The paper [Det] explains exactly what action-angle parametrization

has to be chosen, but we will not need it here.

When Γ is not a planar graph, these formulas are shifted by signs using relative spin

structures on (Γ, ∂Γ), see [Det]. In the remaining of the paper, we will always consider

pants decompositions that have a planar dual graph.

For each genus g, there is a pair of pants decomposition of Σg that has a planar dual

graph. Indeed, taking the boundary a tubular neighborhood of a planar graph of Euler

characteristic 1 − g, one gets a surface of genus g, and taking one curve for each edge of

the planar graph one gets a pair of decomposition of Σg that has this planar graph as dual

graph, see Figure 2. Moreover, applying the action of the mapping class group sends a pair

of pants decomposition with a planar dual graph to another decomposition with a dual

graph that is again planar. Indeed a banded trivalent graph of Euler characteristic 1 − g
is planar if and only if its boundary has g + 1 components. So the mapping class group

action gives us many others such decompositions.

This asymptotic expansion for the matrix coe�cient was �rst remarked and proved by

Marché and Paul in [MP] in the special cases of the four-holed sphere and the one-holed

torus, while the general result for arbitrary compact oriented surface Σ was enonced and

proven by the author in [Det] . The proof used fusion rules, the description of the Kau�man

algebra as a deformation algebra of the algebra of regular functions on M(Σ) and the

algebraic properties of curve operators. The spirit of the next section is to use this formulas

to view the curve operator T γr associated to a curve γ on Σ as a Toeplitz operator with

principal symbol the trace function σγ(τ, θ) = −Tr(ρτ,θ(γ)) which is a function on the

subset µ−1(P̊ ) ofM(Σ).

3.2 TQFT vector spaces Vr(Σ) as spaces of holomorphic sections of line

bundles

We want now to translate the combinatorial de�nition of the TQFT space of Subsection

3.1 in an analytic framework, and see the Vr(Σ) as spaces of holomorphic L2 sections of a

11



complex line bundle over a Kähler manifold.

Since the discovery of Witten-Reshetikhin-Turaev TQFT, it has been a popular endeavor

to link the combinatorial de�nition of TQFT with a de�nition based on geometric quanti-

zation. Given a compact Kähler manifold M , with a prequantization line bundle L (that

is a line bundle with Chern curvature
1

i
ω) and a half-form bundle, we have a sequence of

vector spaces Vr = H0(M,Lr ⊗ δ), and any continuous function f on M gives rise to a

sequence of operators T fr = Πrmf where Πr is the orthogonal projector from L2 sections

of Lr ⊗ δ to the space of holomorphic sections.

The natural geometric object to represent the combinatorial TQFT spaces is then the

moduli spaceM(Σ) together with its Chern-Simons bundle, and a half-form bundle. The

problem is that for a general genus g,M(Σ) is not smooth, and also there is no canonical

choice of complex structure to work with. These hurdles can be solved: for each complex

structure σ on Σ the geometric quantization process yields TQFT spaces V σ
r (Σ) and there

is a connection on the Teichmüller space of Σ called the Hitchin connection, which gives

a way of identifying the various V σ
r (Σ) arising from di�erent complex structures onM(Σ)

(see [H]). The non-smoothness ofM(Σ) is usually avoided of by working with the moduli

space of Σ with a puncture and choosing appropriate holonomy around the puncture in-

stead of the moduli space of Σ.

It has been showed in [AU] that the TQFT de�ned by the geometric approach is isomor-

phic to the combinatorial one. However, the geometric approach to TQFT looses some of

the structure of the combinatorial approach: it is not clear how to geometrically de�ne the

Hermitian structures on the vector spaces Vr(Σ), or the natural basis associated to pants

decompositions, also, the identi�cation is quite unexplicit.

As we wish to use analysis to study pairings of such basis vectors, we will take another

approach. Instead of using M(Σ) to do geometric quantization procedures, we will use

some open subset of M(Σ) associated to a pants decomposition of Σ: the set of regular

points of the momentum map associated to the pants decomposition. Then we are able to

very easily de�ne a complex structure on this set, and to exhibit an isomorphism between

Vr(Σ) and a space of holomorphic sections over this open subset.

Given a pants decomposition of Σ, the set µ−1(P̊ ) of regular points of the associated

momentum map is an open dense subset ofM(Σ) as described in Section 2.1. By action-

angle coordinates it is symplectomorphic to P̊ × T equiped with the symplectic form

ω =
∑

dti ∧ dθi. This open set is a subset of M = RE × T which we will equip with a

Kähler structure.

A symplectic form on M is given by the formula ω =
∑

dti ∧ dθi. The complex structure

on M will be induced by the map

Z : RE × T → (C∗)E/Υ
(ti, θi) → zi = e

ti
2

+iθi

12



and the usual complex structure of (C∗)E .
Here Υ is the discrete subgroup of (C∗)E generated by {εv , v ∈ S} where if v = (e, f, g),

then εvk = (−1)δek+δfk+δgk , where δij is the Kronecker symbol. In fact, (C∗)E/Υ is just

isomorphic to (C∗)E , but it is easier to work with these coordinates to give an expression

of the symplectic form ω. Note that the symplectic form induced on (C∗)E/Υ by this map

is the form i
∑

dwj ∧ dwj , where wj = ln(zj), for a local determination of the logarithm.

We endow the line bundle M × C with the Hermitian form h such that h(t, θ)(1) = e−ϕ

where ϕ =
||t||2

2
=

1

2

∑
ln(zizi)

2. The Chern curvature of this complex line bundle is

∂∂ϕ =
∑

dwj ∧ dwj =
1

i
ω. That is, this is a prequantization bundle.

The manifold M also carries a half-form bundle δ: the bundle of n-form is trivial as

the n-form
dz1

z1
∧ . . .∧ dzn

zn
is well-de�ned globally (because the action of Υ leaves each

dzi
zi

invariant). The square root of the n-form bundle are then parametrized by H1(M, {±1}).
We then choose as half-form bundle a �at bundle with holonomy −1 along the loops

(t, θ + ϕuv)0≤ϕ≤π for v ∈ S. As we will see below, this choice will allow us to identify

H0(M,Lr⊗δ) with a space spanned by monomials which share the same parity conditions

as r-admissible colors.

Notice that with these de�nitions, we have a symplectomorphism between P̊ ×T ⊂ RE×T
and µ−1(P̊ ) ⊂M(Σ). Furthermore, the complex line bundle L with Hermitian connection

h is constructed to have the same curvature and holonomy as the Chern-Simons bundle,

and for δ a bundle on µ−1(P̊ ) with the same holonomy called the metaplectic bundle can

also be de�ned, see [Mar09].

We now want to build an isomorphism between Vr(Σ) and holomorphic sections of Lr ⊗ δ
onM . The space of holomorphic sections of Lr⊗δ has a Hermitian scalar product induced

by the Hermitian structures on L and δ:

(s, s′) =

∫
RE×T

ss′e−rϕ
ωn

n!
=

∫
RE×T

s(t, θ)s′(t, θ)e−
r
2
||t||2dt1 . . . dtndθ1 . . . dθn

Let κ be the constant such that
1

κ

∫
RE×T

e−
r
2
||t||2dt1 . . . dtndθ1 . . . dθn = 1

(that is, κ = Vol(T )
( r

2π

)n
2
, where we recall that n = |E|).

Proposition 3.1. For α ∈ I∞ the formula

eα =
zα

||zα||
=

1√
κ
e
t·α
2

+iα·θe−
||α||2
4r

13



de�nes a holomorphic section of Lr ⊗ δ, and if we set Hr = Vect{eα , α ∈ Ir}, the map

Φr : Vr(Σ) 7→ Hr

ϕα 7→ eα

is a unitary isomorphism between Vr(Σ) and Hr.

Proof. Indeed the parity conditions for α ∈ I∞ is exactly what is required for the sections

zα to have the correct equivariance to be a section of Lr ⊗ δ. It is easy to see then that

the zα are orthogonal for the hermitian product on H0(M,Lr ⊗ δ) and form an Hermitian

basis of H0(M,Lr ⊗ δ). The vector spaces Vr(Σ) and Hr have orthonormal basis ϕα and

eα indexed exactly by the same label set Ir, hence Φr is indeed a unitary isomorphism.

We end this section with a technical result about the asymptotics of the Schwartz kernel

of the orthogonal projection Πr : L2(M,Lr ⊗ δ) → Hr. We will use this result later in

Section 5.2. If s is an L2 section of Lr ⊗ δ, then Πrs may be expressed as

Πrs(t, θ) =
∑
α∈Ir

〈eα, s〉eα(t, ϕ) =

∫
M
N(t, θ, u, ϕ)s(u, ϕ)dudϕ

where N(t, θ, u, ϕ) = e−
r||t||2

2

∑
α∈Ir

eα(u, ϕ)eα(t, θ) is the Schwartz kernel of Πr. There is

also an orthogonal projection map: Π′r : L2(M,Lr ⊗ δ)→ H0(M,Lr ⊗ δ) whose Schwartz
kernel N ′ is called the Bergman kernel. The Bergman kernel is a section of the bundle

L� L−1 ⊗ δ � δ−1 on M ×M . The asymptotics of Bergman kernels of a compact Kahler

manifold M with prequantizing bundle are well understood. Their asymptotics have been

well described by Boutet de Monvel and Sjöstrand in [BdMS]. In particular, the Bergman

kernels concentrate on the diagonal ∆ = {(x, x) x ∈M}. See also [SZ02] for an introduc-

tion to the asymptotics of Bergman kernels.

Here the Kahler manifold we work with is not compact but we have:

Proposition 3.2. The kernel N(t, θ, u, ϕ) = e−
r||t||2

2

∑
α∈Ir

eα(u, ϕ)eα(t, θ) de�ned onM×M

is O(rN ) for the norm of the supremum for some N , and on any compact subset K of

(P̊ × T )2 we have the asymptotic expansion:

N(t, θ, u, ϕ) =

(
r

2π
)n26−4g exp

(
−r||t− u||

2

8
− r||θ − ϕ||2

2
+ ir

(
t+ u

2

)
· (θ − ϕ)

)
e
i
∑
j

(θj−ϕj)
+O(r−∞)

for the norm of the supremum on K.
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Proof. First notice that

N(t, θ, u, ϕ) = e−
r||t||2

2

∑
α∈Ir

eα(u, ϕ)eα(t, θ) =
1

κ

∑
α∈Ir

e−
r||t−αr ||

2

4
− r||u−

α
r ||

2

4 eiα·(θ−ϕ)

is bounded uniformly by a polynomial in r as each term in the sum is bounded by 1 on

M ×M and κ = Vol(T )
( r

2π

)n
2
.

Furthermore, elements of Ir are of the form α = −(1, . . . , 1) + γ where γ is an element of

the lattice Λ de�ned in Section 2.1. On a compact subset K of (P̊ × T )2, this sum is up

to O(r−∞) the same as

1

κ

∑
α∈Λ

e−
r||t+1

r−
α
r ||

2

4
− r||u+

1
r−

α
r ||

2

4 eiα·(θ−ϕ) =
1

κ

∑
α∈Λ

f(r, t, u, θ − ϕ, α
r

)

where f(r, t, u, ξ, x) = e−
r||t+1

r−x||
2

4
− r||u+

1
r−x||

2

4 eirxξ.

For �xed t, u, θ, ϕ and r we set g(x) = f(r, t, u, ξ, x), with ξ = θ − ϕ. The function g,

de�ned for any x ∈ RE , is then a Schwartz function and we have by Poisson summation

formula: ∑
γ∈Λ

g(
α

r
) =

rn

Covol(Λ)

∑
µ∈Hom(RE/Λ,R/2πZ)

ĝ(rµ)

where ĝ is the Fourier transform ĝ(µ) =

∫
RE

g(t)e−iµ(t)dt. We compute that

ĝ(rµ) =

(
2π

r

)n
2

e−
r||u−t||2

8
− r||ξ−µ||

2

2
+ir(u+t2 )(ξ−µ)

As θ and ϕ are well de�ned up to Hom(RE/Λ,R/2πZ) only, we may assume that 0 is the

closest point in Hom(RE/Λ,R/2πZ) to ξ, and we get that

∑
γ∈Λ

g(
α

r
) =

rn

Covol(Λ)
ĝ(0) +O(r−∞)

Finally
rn

κCovol(Λ)
=
( r

2π

) 3n
2

26−4g as Vol(T ) = (2π)nCovol(Λ) and Covol(Λ) = 22g−3

(see [Mar09]) and thus we get:

N(t, θ, u, ϕ) =
( r

2π

) 3n
2

26−4g ĝ(0)e
i
∑
j

(θj−ϕj)

= (
r

2π
)n26−4g exp

(
−r||t− u||

2

8
− r||θ − ϕ||2

2
+ ir

(
t+ u

2

)
· (θ − ϕ)

)
e
i
∑
j

(θj−ϕj)

up to O(r−∞) as claimed.
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3.3 Curve operators as Toeplitz operators

The above section explained the construction of a geometric quantization model for Vr(Σ),

the isomorphism Φr sends Vr(Σ) to a space of holomorphic sections on a Kähler manifold

M of line bundles Lr⊗ δ. This model is not a very natural object but it has the advantage

of being quite simple and explicit, which is what we need for our goal of computing pairings

of vectors in Vr(Σ).

Having a simple model for Vr(Σ), we turn to the curve operators associated to curves on

Σ. By conjugating a curve operator T γr ∈ End(Vr(Σ)) using the isomorphism Φr between

Vr(Σ) and Hr, the curve operators turn into endomorphisms of Hr. We wish to understand

the curve operators as Toeplitz operators on Hr.

Usually given a compact Kähler manifold with a prequantizing bundle L and half form

bundle δ, Toeplitz operators are de�ned as follows: we have an orthogonal projection

operator Πr : L2(M,Lr ⊗ δ) → H0(M,Lr ⊗ δ) and for f : M → R a smooth function

we have an operator mf acting on sections of Lr ⊗ δ by pointwise multiplication by f . A

sequence of endomorphisms of H0(M,Lr ⊗ δ) is then a Toeplitz operator if there exists

a function g(·, r) with asymptotic expansion g(·, r) = g0 +
1

r
g1 + . . . for the norm of the

supremum such that:

Tr = Πrmg(·, r) +Rr

where the term Rr is an operator of norm O(r−N ) for any N .

We introduce a slightly modi�ed de�nition of Toeplitz operators as we wish to work with

the open manifold M = RE × T . Let Πr be the orthogonal projector L2(M,Lr ⊗ δ)→ Hr

where Hr is the vector space de�ned in the last section. Moreover for any smooth bounded

function f on M , let mf be the operator on L2(M,Lr ⊗ δ) of multiplication of a section

by f .

De�nition 3.2. Let U be an open subset of RE × T and let f0, f1, f2, . . . be a sequence

of smooth functions on an open subset U . We say that the sequence Tr of endomorphisms

of Hr is a Toeplitz operator of symbol f0 +
1

r
f1 +

1

r2
f2 + . . . on U if for any k and any

compact subset K ⊂ U we have:

Tr = Πrmχ(f0+ 1
r
f1+...+ 1

rk
fk) +Rr

where χ is some smooth function with compact support in U such that χ ≡ 1 on a neigh-

borhood of K, and Rr are operators whose norms are O(r−k−1) for the norm of operators

(Hr, || · ||L2(M))→ (Hr, || · ||L∞(K)) for any compact subset K ⊂ U and are O(rN ) for the

norm of operator Hr → Hr, for some N ∈ N

Representing curve operators as Toeplitz operators is the main ingredient towards our

formula for pairings of curve operator eigenvectors. Indeed, the asymptotic behavior of

eigenvectors of Toeplitz operators is well understood, eigenvectors are expected to concen-

trate on level sets of the principal symbols.

16



The Theorem 3.1 will serve to identify the principal and subprincipal symbols of curve

operators: we will use it to match the asymptotic expansion of matrix coe�cients of T γr

with that of a Toeplitz operator of symbol f = f0 +
1

r
f1 +

1

r2
f2 + . . .. We will �nd that

the appropriate principal symbol is the trace function onM(Σ) associated to the curve γ.

Our de�nition of Toeplitz operators is a bit unusual in that Toeplitz operators are usually

introduced as having smooth symbol on a compact prequantized manifold M . Here we

work with on an open manifold M and the symbol we get from Theorem 3.1 might not

behave well on the boundary of P × T , hence the need for this local de�nition of Toeplitz

operator. The usual computation of quasimodes of Toeplitz operators derived from mi-

crolocal calculus will still work with this de�nition.

We want to compute the matrix coe�cients of some Toeplitz operator of symbol f . We

will link the matrix coe�cients of such a Toeplitz operator to the Fourier coe�cient of its

symbol.

Lemma 3.1. Let αr be a sequence of admissible colorings such that
αr
r
∈ K where K is a

compact neighborhood of some point x in P̊ , and let eαr be the corresponding basis vectors

of Hr.

Let f be a smooth function on RE with compact support. Finally, take k ∈ ZE and de�ne

∆ as the di�erential operator
∑
e

∂2

(∂xe)2
. Then there exists di�erential operators (Li)i≥2

on RE such that for any n we have:

Πrmf(t)eikθeαr =
(
f(
αr
r

) +
1

2r

(
∆f(

αr
r

) + k · 5f(
αr
r

)− ||k||
2

4
f(
αr
r

)
)

+
∑
n≥2

1

rn
(Lnf)(x) +O(r−n−1)

)
eαr+k

Furthermore, the O(r−n−1) are independent of the sequence αr such that
αr
r
∈ K.

Proof. It is straightforward from the de�nition of eαr that f(t)eikθeαr is orthogonal to

eαr+l for any l 6= k. Thus Πrmf(t)eikθeαr is colinear to eαr+k and we only need to estimate

the coe�cient

(f(t)eikθeαr , eαr+k) =
1

κ

∫
M
f(t)e−

r
2
||t||2eαr·t+

k
2
·t− ||αr ||

2

2r
− k·αr

2r
− ||k||

2

4r

=
e−

k·αr
2r
− ||k||

2

4r

κ

∫
M
g(t)e−

r
2
||t−αr

r
||2

where we set g(t) = f(t)e
k
2
·t.

A stationary phase lemma argument will give us an asymptotic expansion of the integral.

Indeed, letK ′ be a compact neighborhood ofK, as
αr
r
∈ K for all r, for x ∈M \K ′ we have

|g(t)|e−
r
2
||t−αr

r
||2 ≤ ||g||∞e−rd(x,K)2 . As d(K,M \K ′) > 0, the integral of g(t)e−

r
2
||t−αr

r
||2
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on M \K ′ is a O(r−k) for every k, with constants independent of
αr
r
.

Furthermore, we write the Taylor expansion at
αr
r

of g on K ′ at order k:

g(t) = g(
αr
r

) +Dg(
αr
r

)(t− αr
r

) + . . .+
1

k!
Dkg(

αr
r

)(t− αr
r

) + h(t)

with |h(t)| ≤ Ck
(k + 1)!

(t− αr
r

)k+1 where Ck is the supremum of ||Dk+1g|| on K ′, which is

an universal constant independent of
αr
r
.

Integrating by part each integral

∫
M
Dkg(

αr
r

)(t− αr
r

)e−
r
2
||t−αr

r
||2dt, we get 0 whenever k

is odd,
1

r
∆g(

αr
r

) if k = 2 and
1

rn
Ln(g)(

αr
r

) when k = 2n and where (Lng)(
αr
r

) is a linear

combination of the degree k derivatives of g. We get the asymptotic expansion:

1

κ

∫
M
g(t)e−

r
2
||t−αr

r
||2 = g(

αr
r

) +
1

2r
∆g(

αr
r

) +
∑ 1

rk
Lkg(

αr
r

) +O(r−k−1)

where ∆g =
∑
e∈E

∂2

(∂xe)2
and Lk are some di�erential operators of degree 2k. The O(r−k−1)

is uniform for
αr
r
∈ K.

As g(t) = f(t)e
k
2
t, the derivatives of g can be computed in terms of the derivatives of f .

We �nd that there are di�erential operators L′n of degree less than 2n such that (Lng)(t) =

(L′nf)(t)e
k
2
t and we have ∆g(t) =

(
∆f(t) +

1

2
k · ∇f(t) +

||k||2
4

f(t)

)
e
k
2
t where ∇ is the

gradient, · is the scalar product in RE and || · || is the Euclidian norm in RE .
Hence the matrix coe�cient (f(t)eikθeαr , eαr+k) has the asymptotic expansion:

(f(t)eikθeαr , eαr+k) = f(
αr
r

) +
1

2r

(
∆f(

αr
r

) + k · 5f(
αr
r

)− ||k||
2

4
f(
αr
r

)

)
+
∑
n≥2

1

rn
(L′nf)(x) +O(r−n−1)

where L′n are some di�erential operators of degree less than 2n.

The error factor O(r−n−1) is again uniform for
αr
r
∈ K.

Theorem 3.2. For any simple closed curve γ on Σ, there exists functions fk ∈ C∞(P̊×T )

such that T γr ∈ End(Hr) is a Toeplitz operator on P̊ × T of symbol f0 +
1

r
f1 + . . .

Furthermore the principal symbol f0 of T γr is the trace function σγ(t, θ) = −Tr(ρt,θ(γ))

and the Weyl subprincipal symbol de�ned as f1 +
1

2
∆∂f0 vanishes, where ∆∂ is the Kähler

Laplacian on M .

Proof. First we want to introduce the functions f0, f1, . . . that constitutes the symbol of

T γr , using Theorem 3.1 and Lemma 3.1. Let K be a compact in P̊ × T and let K ′ be a

compact neighborhood of K in P̊ × T . We choose a function χ with compact support in
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P̊ × T which is identically 1 on K ′.

Let also αr be a sequence such that
αr
r
∈ K ′.

According to Theorem 3.1, to represent T γr as a Toeplitz operator T frr acting on Hr with

fr = f0 +
1

r
f1 +

1

r2
f2 + . . ., and f ji is the j-th Fourier coe�cient of fi, we need to have:

F γk (
α

r
,
1

r
) = 〈T γr ϕα, ϕα+k〉 = (T frr eα, eα+k)

= fk0 (
α

r
) +

1

r

(
fk1 (

α

r
) +

1

2

[
∆fk0 (

α

r
) + k · 5fk0 (

α

r
)− ||k||

2

4
fk0 (

α

r
)

])
+O(r−2)

using Lemma 3.1 for the second equality. Here we used also the fact that, by Theorem 3.1,

there are only a �nite number of nonzero coe�cients F γk , and thus we search f0, f1, f2, . . .

as �nite sums of elementary functions f(t)eikt used in Lemma 3.1, corresponding to the

indices k such that F γk is not identically zero.

Gathering the equations for each Fourier coe�cient and using Theorem 3.1, we get:

f0(t, θ) =
∑

k:E→Z

F γk (t, 0)eikθ = −Tr(ρt,θ(γ)) = σγ(t, θ)

and

f1(t, θ) +
∑
e∈E

[
1

2

∂2

∂t2e
+

1

2i

∂2

∂te∂θe
+

1

8

∂2

∂θ2
e

]
f0(t, θ) =

1

2i

∑
e∈E

∂2

∂te∂θe
σγ

Remember that we =
te
2

+ iθe are local complex coordinates such that ω = i
∑

dwe∧dwe,

thus the Kähler laplacian ∆∂ on M is simply
∑ ∂2

∂we∂we
=
∑ ∂2

∂t2e
+

1

4

∂2

∂θ2
e

.

Thus f1 +
1

2
∆∂f0 must vanish.

It is then possible to choose further coe�cients fk to match the asymptotic expansion

up to O(r−k+1) for each k, simply choosing fk+1 to cancel the residual term in
1

rk+1
in

T γr −Πrmf0+ 1
r
f1+...

fk
rk

.

At this state, we have introduced smooth functions f0, f1, f2, . . . such that for any K

compact subset of P̊ ×T , any K ′ compact neighborhood of K and χ ≡ 1 on K ′ of compact

support, we have (
T γr −Πrmχ(f0+ 1

r
f1+... 1

rk
fk)

)
sr = O(r−k−1)L∞(K)

uniformly for sr ∈ Vect(eαr ∈ Hr /
αr
r
∈ K ′) of norm 1.

So we just have to control the di�erence of the two operators on the subspace

Vect(eα ∈ Hr, /
α

r
∈ P −K ′). But there is a constant C such that ∀α ∈ P −K ′, we have

sup
K

(|eα|2) ≤ Ce−rd(K,P−K′)2 . Thus for sr ∈ Vect(eα ∈ Hr, /
α

r
∈ P −K ′) of norm 1, we

have sup
K
|sr| < Cr−k−1 for an constant C not depending on sr. As the operators T

γ
r sends
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eα to a linear combination of eα+k with k bounded, and as the T γr are bounded for the

norm of operators on Hr, we must also have sup
K
|T γr sr| < C ′r−k−1.

The quantity f1 +
1

2
∆∂f0 is sometimes called in the litterature the Weyl-subprincipal

symbol of the Toeplitz operator T fr . A straightforward computation gives that, for T fr

and T gr two Toeplitz operators of principal symbols f0 and g0 and subprincipal symbols f1

and g1, the composition T fr T
g
r has f0g0 as principal symbol and f0g1 + f1g0 +

1

2
{f, g} as

subprincipal symbol, which is the composition law that a Weyl-subprincipal symbol ought

to satisfy.

With the framework we developed in the last paragraphs, we wish to study the following

problem: take Σ a closed oriented surface of genus g and C = (Ce)e∈E a pants decomposi-

tion of Σ. Such a pants decomposition gives rise to a moment application µ :M(Σ)→ P ,

to basis ϕα of Vr(Σ) where α are some integer points of the moment polytope P and to

isomorphisms φr : Vr(Σ) −→ Hr de�ned above, where Hr are subspaces of H
0(M,Lr ⊗ δ).

Suppose D = (Df )f∈F is another pants decomposition, and the associated basis of Vr(Σ)

is ψβ . As Vr(Σ) has an Hermitian product, we can form the pairings 〈ϕα, ψβ〉 and study

the limit as
α

r
and

β

r
tend to some limits in RE and RF .

But the vectors ψβ are joint eigenvectors of the curve operators T
γi
r , and by Theorem 3.2, we

know that the operators T γir act as Toeplitz operators with symbol σγi onH0(P̊×T, Lr⊗δ).
Eigenvectors of Toeplitz operators are well understood, in particular they concentrate on

level sets of the principal symbols. We will be able to give an asymptotic form for ψβ as

a section of Lr ⊗ δ, and thus we will be able to compute the pairing with ϕα. As ϕα and

ψβ concentrate on level sets of σCe and σDf , the formula will be a sum of contributions

coming from each intersection points of these level sets. The next section is devoted to a

result proving that generically, such level sets intersect nicely in a �nite number of points,

allowing us to obtain an asymptotic formula by summing the contributions of each of these

points to the pairing in Section 5.

Such pairings have an interpretation as quantum invariants: 〈ϕα, ψβ〉 is the Reshetikhin-
Turaev invariant of the 3-manifold with links obtained by gluing the handlebodies associ-

ated to the pants decompositions C and D, and adding in each handlebody the dual graph

of the pants decomposition colored by α and β respectively. A special case would be if both

coloring are trivial colorings (1, . . . , 1), then adding the colored trivalent graphs correspond

to adding empty links in each handlebody, thus we would obtain the Reshetikhin-Turaev

invariants of the 3-manifold with Heegard genus g and Heegard splitting corresponding by

the pants decomposition C and D. Unfortunately our approach to calculating pairings fails

in this case, as some intersection points will be in ∂P × T and we lack control over what

happens on ∂P .
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4 Intersections of Lagrangians in M(Σ)

We �x a pants decomposition C = (Ce)e∈E , which de�nes an isomorphism Φr : Vr(Σ)→ Hr

as in Proposition 3.1. Furthermore, we denote by U the set µ−1(P̊ ) ⊂ M(Σ), where µ is

the moment map de�ned as in Subsection 2.1.

For D = (γi)i∈I a pants decomposition of Σ, we introduce the closed subset ΛDx ofM(Σ)

de�ned by

ΛDx = {ρ, ∀i ∈ I, −Tr(ρ(γi)) = xi}

When x is in the interior of the moment polytope associated to the pants decomposition

D, these subsets are Lagrangian tori of M(Σ): indeed, it is the pre-image of a regular

value of the Poisson commuting trace functions Tr(ρ(γi)). The Arnold-Liouville theorem

ensures it is a torus of dimension n where dim(M(Σ)) = 2n.

As we expect the joint eigenvectors of curve operators T γir , viewed as elements of Hr,

to concentrate on such Lagrangians, we wish to show that they have nice properties for

generic x.

Proposition 4.1. For D = (γi)i∈I and F = (δj)j∈J any pants decompositions of Σ, we

have:

- For any x in an open dense subset of RI , the intersection ΛDx ∩µ−1(∂P ) is transverse

and ΛDx \ µ−1(∂P ) is connected.

- For any x, y in an open dense subset of RI×RJ , the intersection ΛDx ∩ΛFy is transverse.

Proof. The proposition follows from two steps. First we can obtain the transversality con-

ditions as an application from a classical result in real algebraic geometry, the algebraic

Sard theorem. We will shortly introduce the notions needed to state this result, a detailled

background is found in [BPR].

To begin with, we de�ne a semi-algebraic set N as a subset of some RN de�ned by

polynomial equations or inequations (strict or large): there are a families of polynomi-

als P1, . . . , Pn, Q1, . . . Qm, and R1, . . . Rl such that

N = {x ∈ RN /P1(x) = 0, . . . Pn(x) = 0, Q1(x) > 0, . . . Qm(x) > 0, R1(x) ≥ 0, . . . Rl ≥ 0}

Any a�ne algebraic variety is a semi-algebraic set (de�ned by equations only). For the

usual topology on RN , an a�ne algebraic variety is a strati�ed manifold. Each of its strata

are then semi-algebraic sets.

Moreover any semi-algebraic set is also a strati�ed manifold. The dimension of a semi-

algebraic set is then de�ned to be the maximal dimension of any of its strata.

Regular maps between semi-algebraic sets still are those given by polynomial functions.

Finally, semi-algebraic sets have tangent spaces de�ned in the same manner as in the case
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of algebraic varieties.

We can now express the algebraic Sard theorem:

Theorem 4.1. [BPR]Let N and M be two semi-algebraic sets. If f : N → M is an

algebraic map, then the set Crit(f) = {f(x) / dimTfx(TxN) < dim(Tf(x)M)} is semi-

algebraic and has dimension < dimM

Now we note that the intersections occurring in Proposition 4.1 are intersections of real

algebraic subvarieties insideM(Σ).

Lemma 4.1. Y = µ−1(∂P ) is a real subvariety of M(Σ). Moreover for any D pants

decomposition of Σ and any x ∈ RI , the set ΛDx is a real algebraic subvariety ofM(Σ).

Proof. Indeed, given three curves Ce, Cf , Cg ∈ C that bound a pair of pants Q, the coor-

dinates xe, xf and xg of µ(ρ) satisfy three triangular identities of the type xe ≤ xf + xg,

and the inequation xe + xf + xg ≤ 2. We have equality in one of these equations if and

only if the restriction of ρ to the pair of pants Q is commutative. Hence, ρ ∈ µ−1(∂P ) if

and only if its restriction to one of the pants is commutative, and the set Y is the reunion

of the subvarieties {Tr(ρ([Ce, Cf ]) = 2}, for Ce and Cf in the same pair of pants.

The case of ΛDx is straightforward as ΛDx is de�ned as the set {ρ / Tr(ρ(Di)) = xi}.

Topologically, as Y is a real algebraic manifold, it is a strati�ed manifold. Its strata

are in turn semi-algebraic sets.

We can apply the algebraic Sard theorem to the map (fDe)e∈E : M(Σ) → RI restricted

to any stratum Z ⊂ Y . We obtain that for x in a dense open subset of RI , the map

(fDe)e∈E does not have x as a critical value on the stratum Z. This is the same as saying

that ΛDx is transverse to the stratum Z of Y , so for generic x it is transverse to each stra-

tum of Y . The same applies to showing the transversality of ΛDx and ΛFy for generic x and y.

The only thing that remains to prove is the part about the connectedness of ΛDx \ Y .
We will need the following lemma:

Lemma 4.2. The real algebraic subvariety Y = µ−1(∂P ) has codimension 2 inM(Σ).

Proof. Recall that the subvariety Y is included in the union of subvarieties

{ρ /Tr(ρ([Ce, Cf ])) = 2}

where Ce and Cf are curves of the pair of pants decomposition that bound a common pair

of pants. Thus we only have to show that subvarieties of this type have codimension at

least 2.

Let γ and δ two disjoint non-isotopic simple closed curves in the surface Σ. We show

that the subvariety {Tr(ρ([γ, δ])) = 2} has codimension at least 2 inM(Σ). This contains

the subvariety of abelian representations, which has dimension 2g and thus codimension
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greater than 2, as g ≥ 2. Therefore we are interested in the codimension near an irreducible

representation ρ.

One possibility is that ρ ∈ {ρ ∈ Mirr(Σ) / ρ(γ) = ±I}. This semi-algebraic set is of codi-

mension at least 3 inM(Σ).

Indeed, consider the projection π :M(Σ)→ Hom(π1Σ, SO3)/SO3. This map is a cover on

its image, and thus conserves dimension. The representation ρ is sent to a representation

ρ̃ such that ρ̃(γ) = I in SO3. Taking ρ̃(γ) = I amounts to replaceM(Σ) with the moduli

space of Σ//γ, that is we smash γ to a point.

We have two cases: either γ is separating, we obtain the wedge of two surfaces of genus g1

and g2 with g = g1+g2, whose fundamental space is π1Σg1 ∗π1Σg2 , and whose moduli space

has dimension 6g1− 6 + 6g2− 6 = 6g− 12. When the curve γ is non-separating, Σ//γ has

fundamental group π1Σg−1∗Z and the moduli space has dimension 6(g−1)−6+3 = 6g−9.

In either case, the codimension is greater than 3.

Thus we need only to show that {Tr(ρ([γ, δ])) = 2} has codimension at least 2 in the

neighborhood of points ρ such that ρ(γ) 6= ±I and ρ(δ) 6= ±I.
We denote by F the function ρ → Tr(ρ([γ, δ])). Let ρ an irreducible representation in

{F (ρ) = 2} with ρ(γ) 6= ±I and ρ(δ) 6= ±I. As we consider representation in SU2, the

function F has a local maximum at ρ, thus the di�erential DρF vanishes. To understand

the local structure of {F = 2} near ρ, we compute the 2nd di�erential of F . We will

exhibit a subspace of the tangent space of dimension 2 on which D2F is de�nite negative.

This will prove that the tangent space of {Tr(ρ([γ, δ])) = 2} has codimension at least 2,

and hence �nish the proof of our claim.

Claim: There is a pair of pants P ′ such that ρ is commutative on P ′ and the restriction

mapM(Σ)→M(P ′) is a submersion.

Indeed it is an elementary fact that the tangent space TρM(Σ) is isomorphic to the twisted

cohomology group H1(Σ,Ad ρ) where Adρ stands for the adjoint representation of ρ (see

for example [Mar09]).

Consider the exact sequence in twisted cohomology associated to the pair (Σ, P ):

H1(Σ,Ad ρ)→ H1(P,Ad ρ)→ H2(Σ, P,Ad ρ)

By Poincaré duality, we have H2(Σ, P,Ad ρ) ' H0(Σ \ P,Ad ρ)∗. If Σ \ P is connected, ρ

must be irreducible on Σ\P and then H0(Σ\P,Ad ρ) = 0. When it is not the case, either

ρ is irreducible on each components of Σ \ P and H0(Σ \ P,Ad ρ) = 0, or there is another

pair of pants P ′ in the decomposition on which ρ is commutative and such that Σ \ P ′ is
connected: just take one of the connected components of Σ\P on which ρ is commutative,

it is a surface with one or two boundary curves, and any decomposition of such a surface

has a nonseparating pair of pants disjoint from the boundary.

Hence, we can always assume that H0(Σ \ P,Ad ρ) = 0 and thus that the restriction map

is a submersion.
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Now we only have to show that {ρ′ /F (ρ′) = 2} is of codimension 2 inM(P ).

We now compute the second derivative of the restriction F |M(P ). As ρ(γ) and ρ(δ) com-

mute, up to conjugation we can assume that ρ(γ) and ρ(δ) are diagonal with coe�cients

(eiθ, e−iθ) and (eiϕ, e−iϕ) respectively. We denote these diagonal matrices by Uθ and Uϕ

respectively. We compute the second di�erential of F |M(P ) on H
1(P,Ad ρ), space which

is isomorphic to

H1(P,Ad ρ) = su2

⊕
su2/{(ξ − UθξU−1

θ , ξ − UϕξU−1
ϕ , ξ ∈ su2}

Let us introduce the notations: j =

(
0 1

−1 0

)
and k =

(
0 i

i 0

)
.

Now the vector space V = {(ξ, 0), ξ ∈ Vect(j, k)} is a subspace of dimension 2 ofH1(P,Ad ρ)

(as Uθ and Uϕ have the same commutant, no (ξ, 0) is equivalent to (0, 0) in H1(P,Ad ρ)).

We can endow it with a norm || · || for which (j, k) is an orthonormal basis.

We show that D2F is de�nite negative on V : we have

Tr(Uθe
ξUϕe

−ξU−θ−ϕ) = 2− Tr(UθξUϕξU−θ−ϕ) + 2Tr(ξ2) +O(||ξ||3)

= 2 + Tr(ξ2U−2ϕ)− 2||ξ||2 +O(||ξ||3)

= 2 + 2||ξ||2(cos(2ϕ)− 1) +O(||ξ||3) = 2− 4 sin(ϕ)||ξ||2 +O(||ξ||3)

As the second di�erential is de�nite negative on a subspace of dimension 2, in a neighbor-

hood of ρ the space {ρ′ /F (ρ′) = 2} is of codimension at least 2.

To �nish the proof of Proposition 4.1 we deduce the connectedness of ΛDx ∩Y for generic

x from the Lemma 4.2. Recall that for generic x the intersection ΛDx ∩Y is transverse, thus

the intersections of ΛDx with each {Tr(ρ([Ce, Cf ])) = 2} are transverse. Also, for generic

x ∈ Rn we can assume that the set ΛDx is either empty or a torus of dimension n inside

M(Σ). In the former case the connectedness is trivial. In the latter case, to show that

ΛDx ∩µ−1(P̊ ) is connected, we will only need to show that ΛDx ∩Y is of codimension at least

2 in ΛDx . What we mean by codimension at least 2, is that each strata of this strati�ed

variety has topological codimension at least 2 in the torus ΛDx . As the intersection ΛDx ∩Y
is transverse, it follows from the fact that Y is of codimension at least 2 inM(Σ).

5 Pairings of eigenvectors of curve operators

5.1 Pairing in the half-form bundle

In this short preliminary section, we de�ne various pairings for the half-form bundle δ

on Kähler manifold M . These pairing forms will be useful to describe the asymptotic

expansions occuring in the pairing of quasimodes in Section 5.3.

We consider a general Kähler vector space E of complex dimension n with symplectic form

24



ω and complex structure J .

Choose two transverse Lagrangian subspaces Γ1 and Γ2 of the vector space E.

Let Λn,0E∗ be the space of complex n-forms on M , of which δ is a square root. We have

maps:

πi : Λn,0E∗ → ΛnΓ∗i ⊗ C

which consist of restricting a complex n-form on E to Γi, getting an isomorphism between

complex n-forms on E and the complexi�cation of real n-forms on Γi. On the other hand

we have maps

ΛnΓ∗i ⊗ C→ Λn,0E∗

extending n-form on Γi to complex n-form on E. These maps are well de�ned as the Γi

are Lagrangian (thus Γi
⊕

JΓi = E), and are the inverse isomorphisms of the �rst couple

of maps.

Now given n-forms on Γ1 and Γ2 the wedge product create an 2n-form on E, which we can

compare with the Liouville form
ωn

n!
. Combining with the restriction maps πi, we get the

pairing

Λn,0E∗ × Λn,0E∗ → C

α , β → (α, β)Γ1,Γ2 = in(2−n)π1(α) ∧ π2(β)

ωn

If we have a complex line δ with an isomorphism φ : δ⊗2 → Λn,0E∗ = C, a pairing for δ

associated to Lagrangians Γ1 and Γ2 is

(α, β)Γ1,Γ2 =
√

(α⊗2, β⊗2)Γ1,Γ2

The determination of the square root goes as follows: recall that we also have an Hermitian

pairing

Λn,0E∗ × Λn,0E∗ → C

α , β → (α, β) = in(2−n)α ∧ β
ωn

and thus also a pairing (α, β) =
√

(α⊗2, β⊗2)

It is shown in [Cha10a] that when Γ2 = JΓ1, this pairing is the same as the pairing

(α, β)Γ1,Γ2 up to a positive constant. We require the same to be true for the corresponding

pairing on δ, for general transverse Γ1 and Γ2 we extend the de�nition so that it depends

continuously on Γ1 and Γ2.

Suppose we consider, instead of just a Kähler vector space, a (connected) Kähler man-

ifold M of complex dimension n, equipped with a half-form bundle δ. Pick a point x in

M , pairings on δx can be de�ned by the above procedure. We get pairings on any δy for

y ∈M by extending these by continuity.
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5.2 Quasimodes of curve operators

Let C = (Ce)e∈E and D = (Df )f∈F be two collections of curves that form pair of pants

decompositions of Σ. We assume that these pair of pants decompositions have planar dual

graphs. We call Ir (resp. Jr) the set of r-admissible colorings associated to the pair of

pants decomposition C (resp. D), (ϕrα)α∈Ir and (ψrβ)β∈Jr the associated basis of Vr(Σ).

We introduce the polytope P (resp. Q) that is the image of M(Σ) by the momentum

mapping µ : M(Σ) → RE such that µ(ρ) = arccos(
1

2
Tr(ρ(Ce))) (resp. µ′ such that

µ′(ρ) = arccos(
1

2
Tr(ρ(Ce))).

We want to study the asymptotic behavior of pairings 〈ϕrαr , ψ
r
βr〉 for large level r. We

impose conditions on the sequence αr and βr: �rstly, we need
αr
r

and
βr
r

to stay in com-

pact subsets of P̊ and Q̊. Indeed the representation of common eigenvectors of commuting

Toeplitz operators works well only for eigenvalues corresponding to regular values of the

principal symbols: that is, here, the interior of the polytopes. Secondly, as the eigenvectors

will concentrate on Lagrangian ΛC−2 cos(π αr
r

) and ΛD−2 cos(π βr
r

)
, thus we want the intersection

to be transverse. By Section 4, there is an open dense subset Wt of P̊ × Q̊ such that for

any x, y ∈Wt the Lagrangian ΛC−2 cos(π αr
r

) and ΛD−2 cos(π βr
r

)
are transverse.

So we impose the following conditions on αr and βr:

Property (*) : We say that a sequence (αr, βr) ∈ Ir × Jr satisfy Property (*) if there is

a compact subset K in Wt, such that (
αr
r
,
βr
r

) ∈ K for any r.

As explained in Section 3.2, the pants decomposition C induces an isomorphism Φr from

Vr(Σ) into Hr ⊂ H0(M,Lr⊗ δ), where M = RE ×T , where T is the torus that is the �ber

of the map µ. The vectors ψrβ , as linear combinations of the ϕ
r
α, can be viewed as elements

of Hr, furthermore their L2-norms are concentrated near P × T .
The curve operators T

Df
r have ψrβ as common eigenvectors with eigenvalues −2 cos(

πβf
r

).

But we have given an expression of the curve operators acting on Hr as Toeplitz operators

on U = P̊ ×T . Call σDf the Toeplitz symbol associated to T
Df
r , that is the trace function

associated to the curve Df .

Proposition 5.1. Let W be a compact subset of P̊ and βr ∈ Jr be a sequence such that
βr
r
∈W . The vectors ψrβr are microlocal solutions on U of

T σ
Df

r Ψr = −2 cos(
πβr,f
r

)Ψr

meaning that they satisfy the following 2 conditions:

- (admissibility condition) For any compact subset K ⊂ U , there exists constants C

and N such that |Ψr(x)| ≤ CrN for all x ∈ K.
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- (quasimode condition) For any x ∈ U there is a function ϕ with compact support

containing x, such that Πr(ϕΨr) = Ψr +O(r−∞)

and T
Df
r Πr(ϕΨr) = −2 cos(

πβr,f
r

)Ψr +O(r−∞) uniformly on a neighborhood of x.

Such a sequence of vectors Ψr is also called a quasimode of the Toeplitz operators T
Df
r , for

the joint eigenvalue −2 cos(
πβr,f
r

)

Proof. Indeed, ψrβr is a linear combination of the vectors ϕα which are in number less or

equal than r|E| and the coe�cients in the linear combination are all less or equal than 1

as ψrβr is of norm 1. As h(eα, eα)(x) ≤ 1 for all α and x ∈ RE , the vectors ψrβr satisfy the

admissibility condition.

For the quasimode condition, choose x = (t, θ) ∈ U , let ϕ be a T invariant cuto� function

with compact support in U and identically equal to 1 on a set of the form V × T where

V is a neighborhood of x. Then up to O(r−∞), the projection Πr(ϕψ
r
βr) has the same

coe�cients as ψrβr on each eα with
α

r
∈ V , and on a small neighborhood V ′ ⊂ V of x, any

other eα is O(r−∞). Thus Πr(ϕψ
r
βr) = ψrβr +O(r−∞) on V ′.

Finally, we know that ψrβr is an eigenvector of T
Df
r which on U acts as a Toeplitz operator

of symbol σDf by Theorem 3.2. As ψrβr has the same coe�cients on the eα with α ∈ V up

to O(r−∞), and T
Df
r has a �nite number of nonzero diagonals,

T σ
Df

r Πr(ϕψ
r
βr) = −2 cos(

πβr,f
r

)ϕψrβr +O(r−∞)

on V ′ × T .

The operators T
Df
r of Hr commute as they are curve operators on disjoint curves.

Quasimodes of commuting Toeplitz operators are well understood. When T1, . . . , Tn are

commuting Toeplitz over a Kahler manifold M of dimension 2n, with principal symbols

µi, and E is a regular value of µ : M → Rn, the set µ−1(E) is a Lagrangian torus of M by

the Arnold-Liouville theorem.

Quasimodes associated to eigenvalues Ei concentrate on the Langrangian torus ΛE , and

some Ansatz can be used to compute the asymptotic behavior of quasimodes. We will

follow the approach of [Cha03], which describes quasimodes of such operators as so-called

"Lagrangian sections".

Let U ⊂ U ′ be two contractible neighborhoods of E, consisting of regular values of µ. By

Arnold-Liouville theorem, µ−1(U ′) is di�eomorphic to U ′×T where T is an n-dimensional

torus, and µ acts as the projection U ′ × T → U ′ on it. For any E′ ∈ U ′, the torus ΛE′

is Lagrangian. We take a sequence Er ∈ U , and we are interested in quasimodes of the

Toeplitz operators T1, . . . , Tn, that is microlocal solutions of

T ri Ψr = Eri Ψr (1)

Proposition 3.5 [Cha03] gives a formula that allows to compute quasimodes on contractible

subsets in the following way:
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Proposition 5.2. Let E be a regular value of the momentum map µ : M → Rn and

U ⊂ U ′ be small contractible neighborhoods of E, so that µ−1(U) = U × T where T is a

torus. Let V be a contractible open subset of the torus T . Then:

- There is a smooth map FV : U → L2(U ′×V,L) such that for any E ∈ U , the section
FV (E) is �at of norm 1 on ΛE and of norm < 1 elsewhere in U ′ × V , such that

FV (E) is holomorphic in a neighborhood of ΛE in U × V , and such that all FV (E)

for E ∈ U have the same compact support in U ′ × V

- There is a sequence of smooth map gV (·, r) : U → L2(U ′ × V, δ) such that gV (E, r)

is holomorphic in a neighborhood of ΛE, and gV (·, r) has an asymptotic expansion

gV (·, r) = g0
V (·) +

1

r
g1
V (·) + . . . with g0

V (E)|ΛE satisfying the transport equations

LXeg0
V (E) = 0 where Xe is the symplectic gradient of the function µe.

such that FV (Er)
rg(Er, r) is a microlocal solution on U × V of (1)

Furthermore, the proposition 3.6 of [Cha03] garanties that quasimodes are always of

this form:

Proposition 5.3. Let E be a regular value of µ and U and V be de�ned as in Proposition

5.2. Suppose that ψr is a microlocal solution of (1) on U×V . Then there exists a sequence

λr with λr = O(rN ) for some N such that:

ψr = λrFV (Er)
rg(Er, r) +O(r−∞)

Proof of Propositions 5.2 and 5.3: The material in [Cha03] and [Cha06] is su�cient

to get these two propositions. The proof of Proposition 5.2 consists two steps: �rst step is

a computation of how Toeplitz operators act on Lagrangian sections given by the Ansatz

ψr = F rV g(·, 1

r
). We follow the proof in [Cha06] to work out this calculation. First, the

projection on Hr acts on a Lagrangian section by sending ψr to

Πrψr(x) =

∫
M
N(x, y)F r(y)g(y)µM (y)

where N(x, y) is the kernel we computed in 3.2. What di�ers from [Cha06] is that we

integrate over a non-compact manifold M . However, as [F | ≤ 1, |g| = O(ra) for some a,

and N(x, y) < Crbe−rd(x,y)2 for some constants C and a, we can reduce this integral to

an integral over a bounded open set: let y be in a compact subset K of P̊ × T , and let

ε < d(K, ∂P ). We set Kε = {y / d(y,K) < ε}. We have:∫
M\Kε

N(x, y)F r(y)g(y)µM (y) = O(r−∞)

where the O(r−∞) is uniform for y ∈ K. Once we reduced to an integral over a bounded set,

the computations in [Cha06] apply directly to show that Πrψr = ψr + O(r−∞) uniformly

on K. In the same way, when we compute the action of the Toeplitz operator T γr on the
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Lagrangian section F rg, we can restrict everything to an integral over a bounded set. We

have that:

T γr ψr(x) =

∫
M
N(x, y)fγ(y)χ(y)F r(y)g(y)µ(y) +O(r−∞)

where the O is uniform for x ∈ K, where fγ is the symbol of T γr , and χ is some cuto�

function that is identically 1 over Kε. Again, as N(x, y) < Crbe−rd(x,y)2 , the integral over

M \Kε is a O(r−∞) uniformly on K, and we have

T γr ψr(x) =

∫
Kε

N(x, y)fγ(y)F r(y)g(y)µM (y) +O(r−∞)

We then refer to [Cha06] for the computation of the action of a Toeplitz operator on the

Lagrangian section:

it is shown that a Toeplitz operator of principal symbol µi and vanishing subprincipal

symbol sends the Lagrangian section F rV g to a Lagrangian section

F rV (Erg0 +
1

r
(Erg1 +

1

i
LXig0) + . . .) +O(r−∞)

These computations are again purely local, and transport directly in our setting.

Once the action of Toeplitz operators on Lagrangian sections is known, it is possible to

recursively de�ne the sections gi to get a quasimode by solving transport equations. More-

over the �rst term g0 must satisfy LXig0 = 0.

Then the proof of Proposition 5.3 in [Cha03] consists of using Fourier integral operators to

show the microlocal equation is equivalent to an equation in a "model manifold" in which

the equation can be explicitly solved. The same arguments using the control we have on

the kernel N to localize all integrations can be used to show that the proof in [Cha03] can

also be applied to our setting.�

In general the quasimodes on such contractible open set can be patched together to get a

quasimode on U×T if the sequence Er satisfy some conditions called the Bohr-Sommerfeld

conditions, and then on M using functions, as quasimodes are negligible away from ΛEr .

Roughly speaking, the Bohr-Sommerfeld conditions consist in the following: as the sections

FV (Er) for di�erent contractible V ⊂ T di�er by a complex number, we need to be able

to renormalize them in a coherent way, this is possible when the holonomy of L× δ along
ΛEr is trivial.

In our case, we do not need to study the Bohr-Sommerfeld conditions: we already know the

spectrum of T
Df
r and we have a sequence ψrβr ∈ Hr that realize a quasimode on U = P̊ ×T

of the Toeplitz operators T
Df
r for Eri = −2 cos(

πβi,r
r

).

These quasimode have to concentrate on the Lagrangian Λ
Df
Er . If we chose E

r in an appro-

priate open dense subset of RF , the intersection Λ
Df
Er is connected according to Section 4.

Hence, if we cover Λ
Df
Er ∩U by contractible open sets V1, . . . , Vk, we know that on each Vi,
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there are coe�cients λr,i such that

ψrβr |Vi = λr,iF
r
Vi(E

r)gVi(E
r, r) +O(r−∞)

as sections in L2(P̊ × Vi, Lr ⊗ δ), and the coe�cients λr,i di�er by complex numbers of

norm 1; the sections FVi(E
r) can be patched together to give a section F of L that is �at

of norm 1 on ΛEr , similarly the gVi(E
r, r) are patched together to form a section g of δ.

The sections F and g can be multivalued, however, F rg is a single-valued section of Lr× δ
which has trivial holonomy on ΛEr as Er satisfy the Bohr-Sommerfeld conditions.

Note that here we have used the fact that the intersection U ∩ΛEr is connected, otherwise

we would need multiple constants λr, one for each connected component of the intersection.

Now that we know an asymptotic expression of ψrβr as a Lagrangian section, we want

to calculate |λr| using the fact that ψrβr is of norm 1.

Proposition 5.4. The vectors ψβr for
βr
r
∈ W where W is a compact subset of Q̊, have

an asymptotic expansion as elements of Hr:

ψβr = ur

( r

2π

)n
4

(1 +O(r−1))F r(Er)g(Er)

where

- ur is a sequence of complex number of moduli 1

- Er is the sequence of common eigenvalues corresponding to ψβr , given by the formula

Eri = −2 cos(π
βr,i
r

)

- F and g(·, r) are the smooth maps inW → L2(M,L) andW → L2(M, δ) respectively,

with F (Er) �at of norm 1 on ΛDEr , holomorphic in a neighborhood of this Lagrangian,

and of norm < 1 elsewhere.

And �nally the sections g(Er) of δ on M are holomorphic in a neighborhood of ΛDEr

and have an asymptotic expansion g = g0 +
1

r
g1 + . . . with g0 a smooth section of the

half-form bundle δ such that on ΛDEr we have g
⊗2
0 =

1

Vol(ΛDEr)
dθ1∧ . . . dθn, where the

θi are angle coordinates on ΛDEr .

Proof. The norm of Lagrangian sections can be computed using stationary phase lemma:

according to [Cha03], the Lagrangian section is normalized when we normalize the section

gV by g0
V (E)⊗2 =

1

Vol(ΛEr)
dθ1 ∧ . . . ∧ dθn where θi are angle coordinates on ΛEr , and

λr =
( r

2π

)n
4
.

But as the di�erence between ψrβr and the Lagrangian section is O(r−∞) uniformly only

on compact subset of U = P̊ × T , we need to be careful that ψβr does not carry too much

weight over small neighborhoods of ∂P × T .
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To compute the coe�cient λr, we will introduce an operator Aχ to localize our eigenvector

on P̊ × T . Let χ be a cuto� function with compact support inside P̊ and identically equal

to 1 on the open set {x ∈ P / d(x, ∂P ) > ε}. For ε su�ciently small, this set has non

trivial intersection with ΛD−2 cos(πx) for any x in a given compact subset W of Q̊.

Now the operator Aχ ∈ End(Vr(Σ)) is de�ned as acting on the basis of ϕα associated to

the pants decomposition C by:
Aχϕα = χ(

α

r
)ϕα

The operator Aχ is diagonal on the basis ϕα which are the common eigenvectors of the

curve operators TCer : thus we have

Aχ = χ(
1

π
arccos(−T

Ce
r

2
))

Thanks to the cuto� χ, the function χ(
1

π
arccos) is C∞ on P . The operator Aχ is therefore

a Toeplitz operator of principal symbol σ = χ(
1

π
arccos(−fCe

2
)) and vanishing subprincipal

symbol, where fCe are the trace functions associated to the curves Ce. In [Cha03], it is

stated that for a Lagrangian section Ψr = λr(
r

2π
)
n
4 F rg concentrating on ΛEr , and for a

Toeplitz operator Tr of principal symbol σ and vanishing subprincipal symbol, we have

〈TrΨr,Ψr〉 = (1 +O(r−1))|λr|2
1

Vol(ΛEr)

∫
ΛEr

σdθ1 ∧ . . . dθn

We can apply this for the vector ψβr as an element of Hr and the Toeplitz operator Aχ to

get an expression of 〈Aχψβr , ψβr〉.
But instead of using the isomorphism from Vr(Σ) to Hr corresponding to the pants de-

composition C, we also have an isomorphism corresponding to the decomposition D. With

this isomorphism, ψβr is sent to a monomial eβr in M
′ = RF × T ′, which is a Lagrangian

section concentrating on {βr
r
} × T ′, furthermore, in this simple situation, the coe�cient

λr is exactly (
r

2π
)
n
4 . Though the operator Aχ does not have a simple expression as a

diagonal operator in the base of the eβ , it is still a Toeplitz operator of principal symbol

σ = χ(
1

π
arccos(−fCe

2
)) and vanishing subprincipal symbol in this new setting. Hence we

have:

〈Aχψβr , ψβr〉 = (1 +O(r−1))(
r

2π
)
n
2

1

Vol(T ′)

∫
{βr
r
}×T ′

σdθ1 ∧ . . . dθn

Comparing the two asymptotic expansions of 〈Aχψβr , ψβr〉, as the integral of the principal
symbol of Aχ on ΛEr is non-vanishing, we get that the coe�cient of normalization is indeed

that of the proposition.

5.3 A formula for pairings of eigenvectors

We are ready to prove our �nal theorem:
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Theorem 5.1. Let C and D be two pair of pants decompositions of a closed oriented surface

Σ. Let αr and βr r-admissible colorings for the two pants decompositions such that (αr, βr)

satis�es Property (*), and let ϕαr and ψβr be the corresponding basis vectors of Vr(Σ).

Then we have the following asymptotic expansion:

〈ϕαr , ψβr〉 = ur

( r

2π

)−n
2 1√

Vol(ΛCEαr )Vol(ΛD
E′βr

)

∑
z∈ΛCEαr

∩ΛD
E′
βr

eirη(z)im(z)

| det({µi, µ′j})|
1
2

+O(r−
n
2
−1)

where n = 3g − 3 is half the dimension of the moduli space, ur is a sequence of complex

numbers of moduli 1, µi = −Tr(ρ(Ci)) (resp. µ
′
j = −Tr(ρ(Dj)) ) are the principal symbols

of the curve operators TCir (resp. T
Dj
r ), the volumes of the Lagrangians are volumes for

n-forms dual to the n-vectors X1 ∧ . . . ∧Xn (resp. X ′1 ∧ . . . ∧X ′n) of Hamiltonian vector

�elds of µi (resp. µ
′
j ), e

iη(z) ∈ U is the holonomy of L along a loop γz0,z which goes from a

reference point z0 ∈ ΛCEαr ∩ΛDE′βr
to z in ΛCEαr then back to z0 in ΛDE′βr

and �nally m(z) ∈ Z
corresponds to a Maslov index.

Proof. Let C and D be two pants decompositions of Σ, and (αr, βr) be a sequence of ad-

missible r-colorings (that is index of basis vectors) satisfying Property (*) of 5.2.

We consider pairings of the vectors ϕαr and ψβr . The �rst is a common eigenvector of the

TCer with eigenvalues Ere = −2 cos(
παr,e
r

). The second is a common eigenvector of the T
Df
r

with common eigenvalues E′rf = −2 cos(
πβr,f
r

).

We use the �rst pants decomposition as a decomposition of reference, giving us an isomor-

phism Φr between Vr(Σ) and a space Hr of holomorphic sections of a complex line bundle

Lr⊗δ, by the work done in Section 3.1. Under this isomorphism, we know that the images

of the vectors ψβr are Lagrangian sections, concentrating on the Lagrangian ΛDE′r , and of

the form (1 + O(r−1)(
r

2π
)
n
4 F rg, where F section of L and g section of δ satisfying the

conditions explained in Section 5.2. The same is true for the ϕαr . (actually, the situation

is even simpler, as the isomorphism Φr sends the vectors ϕαr to the vectors eαr of Hr,

which are exactly the expected Lagrangian sections).

As these sections concentrate respectively on ΛCEr and ΛDE′r , the only meaningful contri-

bution in the integral comes from the intersection points of these two Lagrangians. But

as αr and βr were carefully chosen to respect Property (*), the intersection of these two

Lagrangians is always transversal, in particular, consists of a �nite set of points. The

contribution of each intersection point can be computed by means of stationary phase

methods, the computations are done in [Cha03].

For two Lagrangian sections (
r

2π
)
n
4 F1g1 and (

r

2π
)
n
4 F2g2 concentrating on Λ1 and Λ2, the

�rst order of the contribution of an intersection point z of their Lagrangian supports is

(
r

2π
)−

n
2 F1(z)rF2(z)r(g1(z), g2(z))TzΛ1,TzΛ2 .

But F1 and F2 are �at of norm 1 on Λ1 and Λ2. Thus, if we write (F1F2)r(z) = eirη(z) and

pick a point z0 ∈ Λ1 ∩ Λ2 of reference, then eiη(z)−η(z0) is the holonomy of the line bundle

L along a loop γz0,z which goes from z0 to z in Λ1 and returns from z to z0 in Λ2.
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Furthermore, up to normalization, g⊗2
1 (z) and g⊗2

2 (z) are n-forms dual to the n-vectors

X1 ∧ . . .∧Xn(z) and X ′1 ∧ . . .∧X ′n(z) (where the vector �elds Xi and X
′
i are Hamiltonian

vector �elds of µi and µ′i). Thus the pairing (g1(z), g2(z))TzΛ1,TzΛ2 is a square root of
1

Vol(Λ1)Vol(Λ2)
det({µi, µ′j})−1(z).

We can introduce integers m(z) such that

(g1(z), g2(z))TzΛ1,TzΛ2 =
1√

Vol(Λ1)Vol(Λ2)
|det({µi, µ′j})|−

1
2 (z)im(z)

Recall that g1 and g2 are sections of δ such that g⊗2
1 and g⊗2

2 are the complexi�cation of

the n-forms on Λ1 and Λ2 given by
1

Vol(Λ1)
β1 and

1

Vol(Λ2)
β2 (where β1 and β2 are dual to

the Hamiltonian vector �elds of the two sets of principal symbols). The pairings of these

sections have been described in 5.1, which gives a rule depending on the relative positions

of the Lagrangian Λ1 and Λ2 to choose the square root.

These de�nitions of η(z) and m(z) depend only on the homotopy class γz0,z as L and δ are

�at on Λ1 and Λ2. Furthermore, Lr⊗δ is �at and trivial on Λ1 and Λ2 as Bohr-Sommerfeld

conditions are veri�ed, thus the asymptotic expansion does not depend on the choice of

γz0,z at all.

5.4 A geometric interpretation of the phase and index

Our theorem 5.1 introduces two quantities: a phase η(z) and an integer index m(z) where

z is in the intersection of the two Lagrangian Λ1 and Λ2 of the theorem. They are de�ned

using features of Kähler geometry: holonomy of a prequantizing bundle, parallel transport

in a half-form bundle, and the pairings in half-form bundle of Section 5.1. From this de-

scription, the procedure to compute the index m(z) seems rather intricate.

We would like a simple geometric picture to interpret both the phase η(z) and the index

m(z). Of course, only their variation are relevant: if we choose a reference point z0 in the

intersection Λ1 ∩Λ2, we can assume η(z0) = 0 and m(z0) = 0 just by changing the moduli

1 complex number ur appearing in Theorem 5.1. The geometric picture we have in mind

should preferably involve only the symplectic geometry and not the complex structure J

on our quantizing space M , as it is the only structure inherited from the moduli space

M(Σ).

An interesting case is when a loop γz0,z is trivial in π1M and thus bounds a disk Dz0,z.

As the prequantizing line bundle L has curvature
ω

i
, the holonomy of L along γz0,z is the

same as eiA(Dz0,z), where A(Dz0,z) is the symplectic area of Dz0,z.

As for the index m(z), observe that as D(z0, z) is contractile, the half-form bundle δ is

trivial on it. After choosing g1(z0) and g2(z0) (for which there is a sign ambiguity), the

value of g1(x) and g2(x) is determined for any x ∈ D(z0, z) by parallel transport. View

g1(z0)⊗2 as the complexi�cation of a n-form on Λ1, then following γz0,z we get a path e(x)
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in the oriented Lagrangian Grassmanian LG+(D(z0, z)) of D(z0, z), such that for x ∈ γz0,z,
the element g1(x)⊗2 is the complexi�cation of a positive n-form on e(x). The same can

be done for the return map from z to z0 in Λ2, we get a path f . There is a canonical

way to connect these two paths to get a loop in the Lagrangian Grassmanian. Indeed,

�x a Lagrangian frame L. The set of Lagrangians L′ transverse to L is a�ne: any such

Lagrangian is the graph of a map A : L → JL such that JA is symmetric, thus de�nes a

quadratic form on L. We can thus connect L′ to JL by a segment. This give us paths pz0

and pz from Tz0Λ2 to JTz0Λ1 and from JTzΛ1 to TzΛ2. The path Je allows us to close the

path pzfpz0 . We get a close path in the oriented Lagrangian Grassmanian, the π1 class of

which is exactly m(z).

Indeed, as our index m(z) and the class we de�ned depend only on the Lagrangian Λ1

and Λ2, we can move our Lagrangian so that at points of intersection z0 and z we have

TΛ2 = JTΛ1. Then the pairing (·, ·)TΛ1,TΛ2 in the half-form bundle is positively propor-

tional to the square root of the Hermitian pairing on n-form on Dz0,z. Thus, the ambiguity

in the square root comes from which square roots of dθ1 ∧ . . . ∧ dθn (resp dθ′1 ∧ . . . ∧ dθ′n)
the section g1 (resp. g2) represents at z0 and z. Note that, following a loop of class 1 in

π1LG
+(Dz0,z), parallel transport changes gi by a− sign. Hence the π1-class of (Je)·pz·f ·pz0

calculates the index m(z)

The de�nition of the index seems to depend on the quasi-complex structure J . However,

the set of quasi-complex structures on the disk Dz0,z is a�ne. As the index we de�ned

depend continuously on J , it must be constant when the quasi-complex structure J varies.

The argument to interpret geometrically the index m(z) works only when the loop γz0,z

bounds a disk in P̊ × T . The situation is more complicated when the loop is not trivial

in P̊ × T (whose fundamental group is the same as T , that is Zn), and the interpretation

of the index is not clear in this picture, and seems to depend on our speci�c choice of

half-form bundle.

A possible way of tackling this problem would be to show that our choice of half-form

bundle derives from the choice of a spin-structure onM(Σ). The loop γz0,z can be de�ned

as a loop in M(Σ). As the fundamental group of the moduli space M(Σ) is trivial (as

explained in [RSW]), this loop always bounds a disk inM(Σ). We expect the index m(z)

to be computable as the class of some speci�c loop in the Lagrangian Grassmanian of

M(Σ).
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