Do not start this exam until instructed; you will have 90 minutes to finish the exam. No notes, books, calculators, phones or electronic devices are allowed on this exam. If you have a question, raise your hand; otherwise, there is no talking during the exam.

There are 14 problems on this exam on 6 pages, in addition to this cover page. The point values of each problem vary, but are listed in the questions.

Good luck!

From SMBC.
Fill in the Blanks Section. No work needed, and no partial credit available. \[4+4+6+4+4+3=25\]

1. (4 points) A vector normal to the plane \(3x + y = 7z\) is \(\vec{n} = \) ____________________.

2. (4 points) A surface is given by \(F(x, y, z) = x^3 + 2yz + y^2\). The equation of the tangent plane at the point \((1, 0, 1)\) is given by ____________________.

3. (2+2+2=6 points) A particle has acceleration \(\vec{a}\), velocity \(\vec{v}\) and position \(\vec{r}\). You are given that

\[
\vec{a}(t) = \vec{i} - 3\vec{j} \\
\vec{v}(0) = \vec{k} \\
\vec{r}(0) = 2\vec{j} + \vec{k}
\]

Find the following:

(a) \(\vec{v}(t) = \) ____________________

(b) \(\vec{r}(t) = \) ____________________

(c) Does the particle go through the origin? ________

Extra Work Space.
4. (4 points) Suppose that \((3, 4)\) is a critical point for the surface \(h(x, y)\), and say that

\[h_{xx}(3, 4) = 6, \quad h_{yy} = 1, \quad h_{xy}(3, 4) = -2 \]

Choose one of the following:

(a) \((3, 4)\) is a local maximum of \(h\).
(b) \((3, 4)\) is a local minimum of \(h\).
(c) \((3, 4)\) is a saddle point of \(h\).
(d) There is not enough information to determine this.

5. (4 points) The two legs of a right triangle are measured to be 2 cm and 4 cm with a possible error of at most 0.3 cm in each. Use differentials to estimate the maximum error in the calculated value of the area of the triangle: \(\ldots\) cm².

6. (3 points) Consider \(\vec{a} = \langle 1, 0, 0 \rangle\) and \(\vec{b} = \langle 4, 5, -1 \rangle\). Then the vector projection \(\text{proj}_{\vec{a}} \vec{b}\) is \(\ldots\).
Standard Response Questions. Show all work to receive credit. \([10 + 15 + 10 + 5 + 10 + 10 + 10 + 5 = 75]\]

7. (10 points) Find a value of \(a\) such that \(u(x, t) = \sin(4t) \cos(ax)\) satisfies the differential equation \(u_{tt} = 4u_{xx} \).

8. (5+10=15 points) Evaluate the following limits. If one or both does not exist, say so.

(a)
\[
\lim_{(x,y) \to (-1,3)} \frac{2xy}{x^2 + y^2}
\]

(b)
\[
\lim_{(x,y) \to (0,0)} \frac{2xy}{x^2 + y^2}
\]
9. \(7+3=10\) points Consider \(\vec{r}(t) = (2\sin t, t, 2\cos t)\).

(a) Find the arc length function for \(\vec{r}(t)\) starting from the point \((0, 0, 2)\).

(b) Suppose you move 1 unit along \(\vec{r}(t)\) in the positive direction. Where are you now?

10. (5 points) Find a vector normal to the plane passing through the points \(P = (1, 2, 3), Q = (1, 0, 0),\) and \(R = (2, 2, 2)\).
11. (10 points) Find the linearization of \(f(x, y) = 2 + \sqrt{1 + x + \sin y} \) at the point \((0, \pi)\).

12. (10 points) Find the partial derivative \(\frac{\partial T}{\partial r} \) for

\[
T = \frac{v}{u}, \quad u = \frac{2rq^2}{s^2}, \quad v = rs
\]

Your final answer should include only the variables \(q, r, s \).
13. (5+5=10 points) Consider the function \(g(x, y, z) = x + \ln(yz) \).

(a) Find \(\nabla g \) at the point \((3, 1, 2)\).

(b) Find the directional derivative of \(g \) at \((2, 1, 2)\) in the direction of \(\vec{i} + \vec{k} \).

14. (5 points) A ball is thrown in the air at an angle of 45° and an initial speed of 10\(\sqrt{2} \) m/s. How far away does the ball hit the ground? (Ignore air resistance, and use the value of \(g \approx 10 \text{ m/s}^2 \)).