Construction 1 Equilateral

\(\Delta \) given a side.

\[\Delta ABC \text{ is equilateral.} \]

1) Circle, center A, radius AB
2) Circle, center B, radius AB
3) Mark intersection C
Construction 2 Bisect \overline{AB}.

1) Circle, center A radius AB
2) Circle, center B radius AB
3) Mark intersection points.

\overrightarrow{CD} bisects \overline{AB}

Why? Symmetry over line CD.
Construction 3 Bisect angle.

Bisection of step 3.

Angles \(\angle AVC \) and \(\angle CVB \) are congruent.

Step 1 Draw a circle with center \(V \)

Step 2 Make segment from intersection points.

Step 3 Bisect the segment.

Step 4 Draw line \(\overline{V1} \) and \(\overline{V2} \).
Square

Angle found by bisecting straight angle.
Construction 4

Given line \(L \) and point \(P \) on \(L \), find a line \(L' \) through \(P \).

Bisect the angle at \(P \).
Construction 5

Given L

and \overline{P} not on L, find line \perp to L through P.

1. Draw circle with center P.
2. Mark intersection points.
3. Bisect \overline{AB} (Const. 2).
4. Line through P and bisector pt.