Name

PID

Practice Exam 1

MTH 310, Thursday June 7, 2018

Instructions: This exam is closed notes, closed books, no calculators and no electronic devices of any kind. There are four problems worth 25 points each. If a problem has multiple parts, it may be possible to solve a later part without solving the previous parts. Solutions should be written neatly and in a logically organized manner. Partial credit will be given if the student demonstrates an understanding of the problem and presents some steps leading to the solution. Correct answers with no work will be given no credit. The back sheets may be used as scratch paper but will not be graded for credit.

1	2	3	4	Total

Problem 1.

a. (10 points) Find the multiplicative inverse of $[3]$ in \mathbb{Z}_{100}.
b. (10 points) Find two distinct solutions to $x^{2} \equiv 1 \bmod 12$ in \mathbb{Z}_{12}.

Problem 2.

a. (10 pts) Write the fraction $q=\frac{7}{24}$ in the form $q=\frac{k}{8}+\frac{l}{3}$ for some $k, l \in \mathbb{Z}$.
b. (15 pts) Let $a, b \in \mathbb{Z}$ and suppose the gcd of $(a, b)=1$.

Prove that if $r=\frac{n}{a b}$ for $n \in \mathbb{Z}$ then there exist $k, l \in \mathbb{Z}$ such that $r=\frac{k}{a}+\frac{l}{b}$.

Problem 3. Let R be a ring and $I \subset R$ be a subring. I is called an left ideal if whenever $a \in I$ and $r \in R$ then $r a \in I$.
a. (5 pts) Show that the zero ring $\left\{0_{R}\right\}$ is a left ideal of R. (Do not prove the subring part.)
b. (5 pts) Show that \mathbb{Z} is not a left ideal of \mathbb{Q}. (Do not prove the subring part.)
c. (15 pts) Let $\phi: R \rightarrow S$ be a surjective ring homomorphism and suppose $I \subset R$ is a right ideal. Show that the image of I defined as $\phi(I):=\{b \in S: s=\phi(a)$ for some $a \in I\}$ is a right ideal of S.

Problem 4.

a. (10 pts) Write the definition for a ring R to be an integral domain.
b. (15 pts) Let R be a commutative ring with identity. Suppose that for all $a, b, c \in R$ with $a \neq 0_{R}$; if $a b=a c$ then $b=c$. Prove that R is an integral domain.

