Name

PID

Practice Final

MTH 310, Thursday June 28, 2018

Instructions: This exam is closed notes, closed books, no calculators and no electronic devices of any kind. There are five problems worth 20 points each. If a problem has multiple parts, it may be possible to solve a later part without solving the previous parts. Solutions should be written neatly and in a logically organized manner. Partial credit will be given if the student demonstrates an understanding of the problem and presents some steps leading to the solution. Correct answers with no work will be given no credit. The back sheets may be used as scratch paper but will not be graded for credit.

Problem 1.

a. (10 points) Compute the remainder of $13^{2018}+15^{310}-5$ when divided by 14 .
b. (10 points) Consider the polynomials $f(x)=x^{2}+x+2$ and $g(x)=x^{2}-1$ in $\mathbb{Z}_{3}[x]$. Find the gcd of $(f(x), g(x))=d(x)$ and find $u(x), v(x) \in \mathbb{Z}_{3}[x]$ such that

$$
f(x) u(x)+g(x) v(x)=d(x) .
$$

Problem 2. Let R be a ring and $s \in R$ be a fixed element. Define the set

$$
S:=\{s r s: r \in R\}
$$

a. (10 pts) Prove that S is a subring of R.
b. (10 pts) Suppose further that R is a ring with identity and that $s^{2}=1_{R}$. Prove that the map $f: R \rightarrow S$ defined by $f(r)=s r s$ is a homomorphism.

Problem 3. Let $n \in \mathbb{Z}$ with $n>0$.
a. (10 pts) Let $[a],[b] \in \mathbb{Z}_{n}$ and $I=\langle[a],[b]\rangle$ be the ideal generated by $[a]$ and $[b]$.

Find $[d] \in \mathbb{Z}_{n}$ such that $I=\langle[d]\rangle$ is the principal ideal generated by $[d]$.
b. $(10 \mathrm{pts})$ Suppose the gcd of $(d, n)=1$. Prove that $\langle[d]\rangle=\mathbb{Z}_{n}$.

Problem 4. (20 pts.) Let F be a field and $f(x), g(x) \in F[x]$ both be of degree $\leq n$. Suppose that there are distinct elements $c_{0}, c_{1}, c_{2}, \cdots, c_{n} \in F$ such that $f\left(c_{i}\right)=g\left(c_{i}\right)$ for each i.

Prove that $f(x)=g(x)$ in $F[x]$.

Problem 5. Let I, J be ideals of a commutative ring R. Define the function

$$
f: R \rightarrow(R / I) \times(R / J) \quad \text { by } \quad f(r)=(r+I, r+J)
$$

You may use without proof that f is a homomorphism.
a. (10 pts) Prove that $\operatorname{ker} f=I \cap J$.
b. (10 pts) Prove that if $R=\{i+j: i \in I$ and $j \in J\}$ then f is surjective. (Thus, by the First Isomorphism Theorem we have that $R /(I \cap J) \cong R / I \times R / J$.)

