MTH 310: HW 6

Instructor: Matthew Cha

Due: June 25, 2018

1. (Hungerford 5.3.5) Verify that $\mathbb{Q}(\sqrt{3}):=\{a+b \sqrt{3}: a, b \in \mathbb{Q}\}$ is a subfield of \mathbb{R}. Then, show that $\mathbb{Q}(\sqrt{3})$ is isomorphic to $\mathbb{Q}[x] /\left\langle x^{2}-3\right\rangle$.
Solution. By definition, we have the set containment $\mathbb{Q}(\sqrt{3}) \subset \mathbb{R}$.
Let $a+b \sqrt{3}, c+d \sqrt{3} \in \mathbb{Q}(\sqrt{3})$. We have that

$$
\begin{aligned}
(a+b \sqrt{3})+(c+d \sqrt{3}) & =(a+c)+(b+d) \sqrt{3} \in \mathbb{Q}(\sqrt{3}) \\
(a+b \sqrt{3}) \cdot(c+d \sqrt{3}) & =(a c+3 b d)+\sqrt{3}(a d+b c) \in \mathbb{Q}(\sqrt{3})
\end{aligned}
$$

Thus, $\mathbb{Q}(\sqrt{3})$ is closed under addition and multiplication.
We have that $0=0+0 \sqrt{3} \in \mathbb{Q}_{3}$ and $-(a+b \sqrt{3})=-a-b \sqrt{3} \in \mathbb{Q}$. Therefore, $\mathbb{Q}(\sqrt{3}) \subset \mathbb{R}$ is a subring. We can write $\mathbb{Q}[x] /\langle p\rangle$ as the set of congruence class modulo $p(x)=x^{2}-3$. Since we know that each congruence class is determined by a distinct representative of degree strictly less then 2 we have

$$
\mathbb{Q}[x] /\langle p\rangle=\left\{[a+b x]_{p}: a+b x \in \mathbb{Q}[x]\right\} .
$$

Define the map $f: \mathbb{Q}[x] /\langle p\rangle \rightarrow \mathbb{Q}(\sqrt{3})$ by $f\left([a+b x]_{p}\right)=a+b \sqrt{3}$. We want to show that f is an isomorphism. Let $[a+b x]_{p},[c+d x]_{p} \in \mathbb{Q}[x] /\langle p\rangle$. We have that

$$
\begin{aligned}
f\left([a+b x]_{p}+[c+d x]_{p}\right) & =f\left([(a+c)+(b+d) x]_{p}\right) \\
& =(a+c)+(b+d) \sqrt{3} \\
& =(a+b \sqrt{3})+(c+d \sqrt{3}) \\
& =f\left([a+b x]_{p}\right)+f\left([c+d x]_{p}\right)
\end{aligned}
$$

Since $\left[x^{2}\right]_{p}=[3]_{p}$ in $\mathbb{Q}[x] /<p>$ we have that

$$
\begin{aligned}
f\left([a+b x]_{p}[c+d x]_{p}\right) & =f\left(\left[a c+(a d+b c) x+b d x^{2}\right]_{p}\right) \\
& =f\left([(a c+3 b d)+(a d+b c) x]_{p}\right) \\
& =(a c+3 b d)+(a d+b c) \sqrt{x} \\
& =(a+b \sqrt{3})(c+d \sqrt{3}) \\
& =f\left([a+b x]_{p}\right) f\left([c+d x]_{p}\right) .
\end{aligned}
$$

Thus, f respects addition and multiplication and is a homomorphism of rings.
Let $a+b \sqrt{3} \in \mathbb{Q}(\sqrt{3})$ be a general element. Then, f is surjective since $f\left([a+3 x]_{p}\right)=a+b \sqrt{3}$.
Let $[a+b x]_{p},[c+d x]_{p} \in \mathbb{Q}[x] /\langle p\rangle$ and suppose $f\left([a+b x]_{p}\right)=f\left([c+d x]_{p}\right)$. Then, $a+b \sqrt{3}=c+d \sqrt{3}$ and by basic arithmetic

$$
a-c=(b-d) \sqrt{3}
$$

We know that $\sqrt{3}$ is not a rational number. If $b-d \neq 0$ then since \mathbb{Q} is a field $b-d$ must be a unit. We could write $\sqrt{3}=\frac{a-c}{b-d} \in \mathbb{Q}$ which is a contradiction. Thus, $b=d$ and $a=c$. Equating coefficients we have that $a+b x=c+d x$ and thus $[a+b x]_{p}=[c+d x]_{p}$. Therefore, f is injective.
We have proven that f is an isomorphism.
2. (Hungerford 5.3.9) Show that $\mathbb{Z}_{2} /\left\langle x^{3}+x+1\right\rangle$ is a field and contains all three roots of $x^{3}+x+1$.

Solution. We know that \mathbb{Z}_{2} is a field since 2 is prime.
Let $p(x)=x^{3}+x+1$ in $\mathbb{Z}_{2}[x]$. Since $p(0)=1$ and $p(1)=1^{3}+1+1=1$ in $\mathbb{Z}_{2}[x]$ we conclude by the Factor Theorem that p has no roots in $f(x) . p$ is degree 3 and has no roots, thus p is irreducible. Therefore, $\mathbb{Z}_{2}[x] /\left\langle x^{3}+x+1\right\rangle$ is a field.
Since $\mathbb{Z}_{2} \subset \mathbb{Z}_{2}[x] /\langle p\rangle$ is a field extension, we can think of $p(x)=x^{3}+x+1$ as a polynomial with coefficients in the field $\mathbb{Z}_{2}[x] /\langle p\rangle$. By the Factor Theorem and its Corollary 4.17, since $p(x)=x^{3}+x+1$ is a degree 3 polynomial it can have at most 3 distinct roots in $\mathbb{Z}_{2}[x] /\langle p\rangle$.
Let's check that $\left\{[x]_{p},\left[x^{2}\right]_{p},\left[x^{2}+x\right]_{p}\right\}$ are the three distinct roots. We will use the simple relations $[x+1]^{2}=\left[x^{2}+1\right],\left[x^{3}+x+1\right]_{p}=[0]_{p}$, and $\left[x^{3}\right]_{p}=[x+1]_{p}$. Thus we have that

$$
\begin{aligned}
p\left([x]_{p}\right) & =[x]_{p}^{3}+[x]_{p}+[1]_{p} \\
& =\left[x^{3}+x+1\right]_{p} \\
& =[0]_{p} \\
p\left(\left[x^{2}\right]_{p}\right) & =\left[x^{2}\right]_{p}^{3}+\left[x^{2}\right]_{p}+[1]_{p} \\
& =\left[x^{3}\right]_{p}^{2}+\left[x^{2}\right]_{p}+[1]_{p} \\
& =[x+1]_{p}^{2}+\left[x^{2}\right]_{p}+[1]_{p} \\
& =\left[x^{2}+1\right]_{p}+\left[x^{2}+1\right]_{p} \\
& =[0]_{p} \\
p\left(\left[x^{2}+x\right]_{p}\right) & =\left[x^{2}+x\right]_{p}^{3}+\left[x^{2}+x\right]_{p}+[1]_{p} \\
& =\left[x^{3}(x+1)^{3}\right]_{p}=\left[x^{2}+x+1\right]_{p} \\
& =\left[(x+1)^{4}\right]_{p}+\left[x^{2}+x+1\right]_{p} \\
& =\left[\left(x^{2}+1\right)\left(x^{2}+1\right)\right]_{p}+\left[x^{2}+x+1\right]_{p} \\
& =\left[x^{4}+1\right]_{p}+\left[x^{2}+x+1\right]_{p} \\
& =[(x+1) x+1]_{p}+\left[x^{2}+x+1\right]_{p} \\
& =\left[x^{2}+x+1\right]_{p}+\left[x^{2}+x+1\right]_{p} \\
& =[0]_{p}
\end{aligned}
$$

3. (Hungerford 6.1.6) Show that the set of nonunits in \mathbb{Z}_{8} is an ideal.

Solution.

Recall that in a past HW we showed that $[a] \in \mathbb{Z}_{8}$ is either a unit or zero divisor, and $[a]$ is a zero-divisor if and only if the gcd of $(a, 8)>1$. Thus, $I=\left\{[a] \in \mathbb{Z}_{8}:[a]\right.$ is a zero divisor $\}=\left\{[a] \in \mathbb{Z}_{8}:(a, 8)>1\right\}$. We need to show that I is a subring and satisfies the ideal property.
(subring) Let $[a],[b] \in I$ and define the gcds $d_{1}=(a, 8)>1$ and $d_{2}=(b, 8)>1$. It follows that d_{1}, d_{2} must be either 2 or 4 since these are the only proper divisors of 8 . Thus, $2 \mid d_{1}$ and $2\left|d_{2} \Longrightarrow 2\right| a$ and $2|b \Longrightarrow 2| a+b$ and $2 \mid a b$. We have shown that the gcd of $(a+b, 8) \geq 2$ and $(a b, 8) \geq 2$ so that $a+b$ and $a b$ are a zero-divisors in \mathbb{Z}_{8}. Therefore, $[a]+[b] \in I$ and $[a][b] \in I$.
By definition [0] is a zero-divisor $\Longrightarrow[0] \in I$. Since a and $-a$ have the same set of divisors this implies that the $\operatorname{gcd}(-a, 8)=(a, 8)>1$. Thus, $[-a] \in I$.
Therefore by the subring theorem I is a subring.
(ideal property) Let $[a] \in I$ and $[r] \in \mathbb{Z}_{8}$. Let $d=(a, 8)>1$ be the gcd. Then, $d|a \Longrightarrow d| r a$. Thus, $(r a, 8) \geq(a, 8)>1$. Therefore $[r][a] \in I$. Since \mathbb{Z}_{8} is commutative, we conclude that I satisfies the ideal property.
4. (Hungerford 6.1.23) Verify that $I=\{0,3,6,9,12\}$ is an ideal in \mathbb{Z}_{15} and list all distinct cosets.

Solution. Notice that we have the following set inclusions

$$
I=\{[r]: 0 \leq r<15 \text { and } 3 \mid r\} \subset\{[3 k]: k \in \mathbb{Z}\} .
$$

Using the division algorithm, we can write $3 k=15 q+r$ for some $0 \leq r<15$. It follows that $r=3(k-5 q)$ so that $3 \mid r$. Therefore we have shown that

$$
I=\{[3 k]: k \in \mathbb{Z}\}
$$

We need to show that I is a subring and has the ideal property.
(subring) Let $[3 k],[3 j] \in I$. We have that $[3 k]+[3 j]=[3(k+j)] \in I$ and $[3 k][3 j]=[3(3 k j)] \in I$. Thus I is closed under addition and multiplication.
If $k=0$ then $[3 k]=[3 \cdot 0]=[0] \in I$ and $-[3 k]=[3(-k)] \in I$.
Therefore, by the subring theorem we have that I is a subring.
(ideal property) Let $[a] \in \mathbb{Z}_{15}$ and $[3 k] \in I$. Then, $[a][3 k]=[3(a k)] \in I$. Since \mathbb{Z}_{15} is commutative, we conclude that I has the ideal property.
Therefore, I is an ideal.
The cosets of I are $\mathbb{Z}_{15} /\langle I\rangle=\left\{[a]+I:[a] \in \mathbb{Z}_{15}\right\}$. We have that $[a]+I=[b]+I$ if and only if $[a-b] \in I$ if and only if $[a-b]=[3 k]$ for some $k \in \mathbb{Z}$. Thus, $(a-b)-3 k=15 j \Longleftrightarrow a-b=3(5 j+k)$, that is, $a \equiv b \bmod 3$. Therefore, distinct cosets are equal if and only if their remainder modulo 3 are equal. We conclude that there are three distinct cosets

$$
\mathbb{Z}_{15} /\langle I\rangle=\{[0]+I,[1]+I,[2]+I\} .
$$

5. (Hungerford 6.1.35) Let $I \subset \mathbb{Z}$ be an ideal such that $\langle 3\rangle \subset I \subset \mathbb{Z}$. Prove that either $I=\langle 3\rangle$ or $I=\mathbb{Z}$.

Solution. If $I=\langle 3\rangle$ then we are done.
Suppose $I \neq\langle 3\rangle$ and let $a \in I$ be such that $a \notin\langle 3\rangle$. Since 3 is prime and 3 does not divide a we have that the gcd of $(3, a)=1$. It follows that there are $u, v \in \mathbb{Z}$ such that $3 u+a v=1$. Moreover, $a v \in i$ and si nce $3 \in\langle 3\rangle$ we have that $3 \in I$ and $3 u \in I$. I is a subring so $1=3 u+a v \in I$.

For any $a \in \mathbb{Z}$ we have that $a=a \cdot 1 \in I$. Therefore $I=\mathbb{Z}$.
6. Let $a \in \mathbb{R}$ and consider the evaluation homomorphism $\phi: \mathbb{R}[x] \rightarrow \mathbb{R}$ where $\phi(f(x))=f(a)$. Find the kernel of ϕ.

Solution. By definition $\operatorname{ker} \phi=\{f(x) \in \mathbb{R}[x]: \phi(f(x))=0\}$. Thus, $f(x) \in \operatorname{ker} \phi$ if and only if $\phi(f(x))=0$ if and only if $f(a)=0$. Since \mathbb{R} is a field we can apply the Factor Theorem to see that $f(x) \in \operatorname{ker} \phi$ if and only if $x-a \mid f(x)$, that is $f(x)=(x-a) g(x)$ for some $g(x) \in F[x]$. We conclude that the kernel of ϕ is the principal ideal generated by $x-a$

$$
\operatorname{ker} \phi=\langle x-a\rangle
$$

7. (Hungerford 6.2.12) Let I be an ideal in a noncommutative ring R such that $a b-b a \in I$ for all $a, b \in R$. Prove that R / I is commutative.

Solution.

By assumption $a b-b a \in I$ for all $a, b \in R$. It follows that $(a b-b a)+I=0_{R}+I$ for all $a, b \in R$.
Let $a+I, b+I \in R / I$ be arbitrary cosets of I. We have that

$$
\begin{aligned}
(a+I)(b+I)-(b+I)(a+I) & =((a b)+I)-((b a)+I) \\
& =(a b-b a)+I \\
& =0_{R}+I .
\end{aligned}
$$

By definition, R / I is commutative.
8. (Hungerford 6.2.21) Use the First Isomorphism Theorem to show that $\mathbb{Z}_{20} /\langle[5]\rangle$ is isomorphic to \mathbb{Z}_{5}.

Solution. Define the function $f: \mathbb{Z}_{20} \rightarrow \mathbb{Z}_{5}$ by $f\left([a]_{20}\right)=[a]_{5}$.
(well-defined) Since we define the function by its action on representatives, first we must show the function is well defined. Suppose $[a]_{2} 0=[b]_{2} 0$. Thats, if and only if $a-b=20 k=5(4 k)$ for some $k \in \mathbb{Z}$ if and only if $f\left([a]_{20}\right)=[a]_{5}=[b]_{5}=f\left([b]_{20}\right)$. Thus, f is well defined.
(surjective) Let $[a]_{5} \in \mathbb{Z}_{5}$. Then, $f\left([a]_{20}\right)=[a]_{5}$ thus f is surjective.
(homomorphism) Let $[a]_{20},[b]_{20} \in \mathbb{Z}_{20}$. Then,

$$
\begin{aligned}
f\left([a]_{20}+[b]_{20}\right) & =f\left([a+b]_{20}\right) \\
& =[a+b]_{5} \\
& =[a]_{5}+[b]_{5} \\
& =f\left([a]_{20}\right)+f\left([b]_{20}\right), f\left([a]_{20}[b]_{20}\right) \quad=f\left([a b]_{20}\right) \\
& =[a b]_{5} \\
& =[a]_{5}[b]_{5} \\
& =f\left([a]_{20}\right) f\left([b]_{20}\right)
\end{aligned}
$$

Therefore f is a homomorphism of rings.
(kernel) We claim that $\operatorname{ker} f=\left\langle[5]_{20}\right\rangle$. Notice that $f\left([5]_{20}\right)=[5]_{5}=[0]_{5} \Longrightarrow \quad[5]_{20} \in \operatorname{ker} f$. Since f is a homomorphism $f\left([a]_{20}[5]_{20}\right)=[a]_{5}[0]_{5}=[0]_{5} \Longrightarrow\left\langle[5]_{20}\right\rangle \subset \operatorname{ker} f$. Let $[a]_{20} \in \operatorname{ker} f$. Then $f\left([a]_{20}\right)=[a]_{5}=[0]_{5}$. Thus we have that $5 \mid a$ if and only if $a=5 b$ for some $b \in \mathbb{Z}$ if and only if $[a]_{20}=[5 b]_{20}=[5]_{20}[b]_{20} \in\left\langle[5]_{20}\right\rangle$. Therefore, ker $f=\left\langle[5]_{20}\right\rangle$.
By the First Isomorphism Theorem, the map $\phi: \mathbb{Z}_{20} /\left\langle[5]_{20}\right\rangle \rightarrow \mathbb{Z}_{5}$ defined by $\phi(a+\langle 5\rangle)=f(a)$ is an isomorphism.
9. (Hungerford 6.3.5) List all maximal ideals in \mathbb{Z}_{6}. Do the same in \mathbb{Z}_{12}.

Solution. Let I be an ideal of \mathbb{Z}_{6}.
If I contains a unit, $a \in I$ then $a a^{-1}=[1] \in I$. Thus, for any $[b] \in \mathbb{Z}_{6}$ we have that $[b]=[b][1] \in I$. Therefore $I=\mathbb{Z}_{6}$.
If $I \neq \mathbb{Z}_{6}$ then $I \subset\{[0],[2],[3],[4]\}$ the set of non-units in \mathbb{Z}_{6}. Note that I must be a strict subset since if $[2],[3] \in I$ then $[3]-[2]=[1] \in I$ which would imply that $I=\mathbb{Z}_{6}$. We know that $[0] \in I$. We can check by hand that the following subsets are principal ideals:

$$
\begin{array}{r}
\{[0]\} \\
\{[0],[2],[4]\}=\langle[2]\rangle=\langle[4]\rangle \\
\{[0],[3]\}=\langle[3]\rangle
\end{array}
$$

Moreover, the subset $\{[0],[2]\},\{[0],[4]\},\{[0],[3],[4]\},\{[0],[2],[3]\}$ are not ideals. Therefore, \mathbb{Z}_{6} has a total of 2 non-trivial ideals $\{[0],[2],[4]\}$ and $\{[0],[3]\}$. They are both maximal.

10. (Hungerford 6.3.13)

(a) Let $I \subset R$ be an ideal. Prove that $I \times I$ is an ideal in $R \times R$.
(b) Prove that $(R \times R) /(I \times I)$ is isomorphic to $R / I \times R / I$. (Hint: Consider the function $f((a, b))=$ $(a+I, b+I)$.

Solution.

(a) Since $I \times I \subset R \times R$ are both rings this implies that $I \times I$ is a subring.

We must show the ideal property holds. Let $(a, b) \in R \times R$ and $(i, j) \in I \times I$. Then, ai $\in I$ and $b j \in I$ since I is an ideal. Therefore, $(a i, b j) \in I \times I$.
(b) Define the function $f: R \times R \rightarrow R / I \times R / I$ by $f((a, b))=(a+I, b+I)$. Then, by its definition f is surjective.
Let $(a, b),(c, d) \in R \times R$. We have that

$$
\begin{aligned}
f((a, b)+(c, d)) & =f((a+c, b+d)) \\
& =((a+c)+I,(b+d)+I) \\
& =(a+I, b+I)+(c+I, d+I) \\
& =f((a, b)) f((c, d)) \\
f((a, b) \cdot(c, d)) & =f((a c, b d)) \\
& =((a c)+I,(b d)+I) \\
& =(a+I, b+I) \cdot(c+I, d+I) \\
& =f((a, b)) f((c, d))
\end{aligned}
$$

Therefore f is a homomorphism.
The following statement follows directly: $i \times j \in I \times I$ if and only if $i+I=j+I=0_{R}+I$. if and only if $f((i, j))=(i+I, j+I)=\left(0_{R}+I, 0_{R}+I\right)$. Therefore, ker $f=I \times I$.
By the First Isomorphism Theorem, we conclude that $R \times R /(I \times I) \cong R / I \times R / I$.

