
MTH 310: HW 6

Instructor: Matthew Cha

Due: June 25, 2018

1. ( Hungerford 5.3.5) Verify that Q(
√

3) := {a+ b
√

3 : a, b ∈ Q} is a subfield of R. Then, show that
Q(
√

3) is isomorphic to Q[x]/〈x2 − 3〉.

Solution. By definition, we have the set containment Q(
√

3) ⊂ R.

Let a+ b
√

3, c+ d
√

3 ∈ Q(
√

3). We have that

(a+ b
√

3) + (c+ d
√

3) = (a+ c) + (b+ d)
√

3 ∈ Q(
√

3)

(a+ b
√

3) · (c+ d
√

3) = (ac+ 3bd) +
√

3(ad+ bc) ∈ Q(
√

3).

Thus, Q(
√

3) is closed under addition and multiplication.

We have that 0 = 0 + 0
√

3 ∈ Q3 and −(a+ b
√

3) = −a− b
√

3 ∈ Q. Therefore, Q(
√

3) ⊂ R is a subring.

We can write Q[x]/〈p〉 as the set of congruence class modulo p(x) = x2 − 3. Since we know that each
congruence class is determined by a distinct representative of degree strictly less then 2 we have

Q[x]/〈p〉 = {[a+ bx]p : a+ bx ∈ Q[x]}.

Define the map f : Q[x]/〈p〉 → Q(
√

3) by f([a + bx]p) = a + b
√

3. We want to show that f is an
isomorphism. Let [a+ bx]p, [c+ dx]p ∈ Q[x]/〈p〉. We have that

f([a+ bx]p + [c+ dx]p) = f([(a+ c) + (b+ d)x]p)

= (a+ c) + (b+ d)
√

3

= (a+ b
√

3) + (c+ d
√

3)

= f([a+ bx]p) + f([c+ dx]p).

Since [x2]p = [3]p in Q[x]/ < p > we have that

f([a+ bx]p[c+ dx]p) = f([ac+ (ad+ bc)x+ bdx2]p)

= f([(ac+ 3bd) + (ad+ bc)x]p)

= (ac+ 3bd) + (ad+ bc)
√
x

= (a+ b
√

3)(c+ d
√

3)

= f([a+ bx]p)f([c+ dx]p).

Thus, f respects addition and multiplication and is a homomorphism of rings.

Let a+ b
√

3 ∈ Q(
√

3) be a general element. Then, f is surjective since f([a+ 3x]p) = a+ b
√

3.

Let [a+ bx]p, [c+ dx]p ∈ Q[x]/〈p〉 and suppose f([a+ bx]p) = f([c+ dx]p). Then, a+ b
√

3 = c+ d
√

3
and by basic arithmetic

a− c = (b− d)
√

3.

We know that
√

3 is not a rational number. If b − d 6= 0 then since Q is a field b − d must be a unit.
We could write

√
3 = a−c

b−d ∈ Q which is a contradiction. Thus, b = d and a = c. Equating coefficients
we have that a+ bx = c+ dx and thus [a+ bx]p = [c+ dx]p. Therefore, f is injective.

We have proven that f is an isomorphism.
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2. (Hungerford 5.3.9) Show that Z2/〈x3 + x+ 1〉 is a field and contains all three roots of x3 + x+ 1.

Solution. We know that Z2 is a field since 2 is prime.

Let p(x) = x3 + x + 1 in Z2[x]. Since p(0) = 1 and p(1) = 13 + 1 + 1 = 1 in Z2[x] we conclude by
the Factor Theorem that p has no roots in f(x). p is degree 3 and has no roots, thus p is irreducible.
Therefore, Z2[x]/〈x3 + x+ 1〉 is a field.

Since Z2 ⊂ Z2[x]/〈p〉 is a field extension, we can think of p(x) = x3 + x + 1 as a polynomial with
coefficients in the field Z2[x]/〈p〉. By the Factor Theorem and its Corollary 4.17, since p(x) = x3+x+1
is a degree 3 polynomial it can have at most 3 distinct roots in Z2[x]/〈p〉.
Let’s check that {[x]p, [x

2]p, [x
2 + x]p} are the three distinct roots. We will use the simple relations

[x+ 1]2 = [x2 + 1], [x3 + x+ 1]p = [0]p, and [x3]p = [x+ 1]p. Thus we have that

p([x]p) = [x]3p + [x]p + [1]p

= [x3 + x+ 1]p

= [0]p

p([x2]p) = [x2]3p + [x2]p + [1]p

= [x3]2p + [x2]p + [1]p

= [x+ 1]2p + [x2]p + [1]p

= [x2 + 1]p + [x2 + 1]p

= [0]p

p([x2 + x]p) = [x2 + x]3p + [x2 + x]p + [1]p

= [x3(x+ 1)3]p = [x2 + x+ 1]p

= [(x+ 1)4]p + [x2 + x+ 1]p

= [(x2 + 1)(x2 + 1)]p + [x2 + x+ 1]p

= [x4 + 1]p + [x2 + x+ 1]p

= [(x+ 1)x+ 1]p + [x2 + x+ 1]p

= [x2 + x+ 1]p + [x2 + x+ 1]p

= [0]p.

3. (Hungerford 6.1.6) Show that the set of nonunits in Z8 is an ideal.

Solution.

Recall that in a past HW we showed that [a] ∈ Z8 is either a unit or zero divisor, and [a] is a zero-divisor
if and only if the gcd of (a, 8) > 1. Thus, I = {[a] ∈ Z8 : [a] is a zero divisor} = {[a] ∈ Z8 : (a, 8) > 1}.
We need to show that I is a subring and satisfies the ideal property.

(subring) Let [a], [b] ∈ I and define the gcds d1 = (a, 8) > 1 and d2 = (b, 8) > 1. It follows that d1, d2
must be either 2 or 4 since these are the only proper divisors of 8. Thus, 2|d1 and 2|d2 =⇒ 2|a and
2|b =⇒ 2|a+ b and 2|ab. We have shown that the gcd of (a+ b, 8) ≥ 2 and (ab, 8) ≥ 2 so that a+ b
and ab are a zero-divisors in Z8. Therefore, [a] + [b] ∈ I and [a][b] ∈ I.

By definition [0] is a zero-divisor =⇒ [0] ∈ I. Since a and −a have the same set of divisors this
implies that the gcd (−a, 8) = (a, 8) > 1. Thus, [−a] ∈ I.

Therefore by the subring theorem I is a subring.

(ideal property) Let [a] ∈ I and [r] ∈ Z8. Let d = (a, 8) > 1 be the gcd. Then, d|a =⇒ d|ra. Thus,
(ra, 8) ≥ (a, 8) > 1. Therefore [r][a] ∈ I. Since Z8 is commutative, we conclude that I satisfies the
ideal property.

4. (Hungerford 6.1.23) Verify that I = {0, 3, 6, 9, 12} is an ideal in Z15 and list all distinct cosets.

Solution. Notice that we have the following set inclusions

I = {[r] : 0 ≤ r < 15 and 3|r} ⊂ {[3k] : k ∈ Z}.
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Using the division algorithm, we can write 3k = 15q + r for some 0 ≤ r < 15. It follows that
r = 3(k − 5q) so that 3|r. Therefore we have shown that

I = {[3k] : k ∈ Z}.

We need to show that I is a subring and has the ideal property.

(subring) Let [3k], [3j] ∈ I. We have that [3k] + [3j] = [3(k + j)] ∈ I and [3k][3j] = [3(3kj)] ∈ I. Thus
I is closed under addition and multiplication.

If k = 0 then [3k] = [3 · 0] = [0] ∈ I and −[3k] = [3(−k)] ∈ I .

Therefore, by the subring theorem we have that I is a subring.

(ideal property) Let [a] ∈ Z15 and [3k] ∈ I. Then, [a][3k] = [3(ak)] ∈ I. Since Z15 is commutative, we
conclude that I has the ideal property.

Therefore, I is an ideal.

The cosets of I are Z15/〈I〉 = {[a]+I : [a] ∈ Z15}. We have that [a]+I = [b]+I if and only if [a−b] ∈ I
if and only if [a− b] = [3k] for some k ∈ Z. Thus, (a− b)− 3k = 15j ⇐⇒ a− b = 3(5j + k), that is,
a ≡ b mod 3. Therefore, distinct cosets are equal if and only if their remainder modulo 3 are equal.
We conclude that there are three distinct cosets

Z15/〈I〉 = {[0] + I, [1] + I, [2] + I}.

5. (Hungerford 6.1.35) Let I ⊂ Z be an ideal such that 〈3〉 ⊂ I ⊂ Z. Prove that either I = 〈3〉 or
I = Z.

Solution. If I = 〈3〉 then we are done.

Suppose I 6= 〈3〉 and let a ∈ I be such that a /∈ 〈3〉. Since 3 is prime and 3 does not divide a we have
that the gcd of (3, a) = 1. It follows that there are u, v ∈ Z such that 3u + av = 1. Moreover, av ∈ i
and si nce 3 ∈ 〈3〉 we have that 3 ∈ I and 3u ∈ I. I is a subring so 1 = 3u+ av ∈ I.

For any a ∈ Z we have that a = a · 1 ∈ I. Therefore I = Z.

6. Let a ∈ R and consider the evaluation homomorphism φ : R[x] → R where φ(f(x)) = f(a). Find the
kernel of φ.

Solution. By definition kerφ = {f(x) ∈ R[x] : φ(f(x)) = 0}. Thus, f(x) ∈ kerφ if and only if
φ(f(x)) = 0 if and only if f(a) = 0. Since R is a field we can apply the Factor Theorem to see that
f(x) ∈ kerφ if and only if x − a|f(x), that is f(x) = (x − a)g(x) for some g(x) ∈ F [x]. We conclude
that the kernel of φ is the principal ideal generated by x− a

kerφ = 〈x− a〉

7. (Hungerford 6.2.12) Let I be an ideal in a noncommutative ring R such that ab − ba ∈ I for all
a, b ∈ R. Prove that R/I is commutative.

Solution.

By assumption ab− ba ∈ I for all a, b ∈ R. It follows that (ab− ba) + I = 0R + I for all a, b ∈ R.

Let a+ I, b+ I ∈ R/I be arbitrary cosets of I. We have that

(a+ I)(b+ I)− (b+ I)(a+ I) = ((ab) + I)− ((ba) + I)

= (ab− ba) + I

= 0R + I.

By definition, R/I is commutative.
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8. (Hungerford 6.2.21) Use the First Isomorphism Theorem to show that Z20/〈[5]〉 is isomorphic to
Z5.

Solution. Define the function f : Z20 → Z5 by f([a]20) = [a]5.

(well-defined) Since we define the function by its action on representatives, first we must show the
function is well defined. Suppose [a]20 = [b]20. Thats, if and only if a − b = 20k = 5(4k) for some
k ∈ Z if and only if f([a]20) = [a]5 = [b]5 = f([b]20). Thus, f is well defined.

(surjective) Let [a]5 ∈ Z5. Then, f([a]20) = [a]5 thus f is surjective.

(homomorphism) Let [a]20, [b]20 ∈ Z20. Then,

f([a]20 + [b]20) = f([a+ b]20)

= [a+ b]5

= [a]5 + [b]5

= f([a]20) + f([b]20), f([a]20[b]20) = f([ab]20)

= [ab]5

= [a]5[b]5

= f([a]20)f([b]20).

Therefore f is a homomorphism of rings.

(kernel) We claim that ker f = 〈[5]20〉. Notice that f([5]20) = [5]5 = [0]5 =⇒ [5]20 ∈ ker f . Since
f is a homomorphism f([a]20[5]20) = [a]5[0]5 = [0]5 =⇒ 〈[5]20〉 ⊂ ker f . Let [a]20 ∈ ker f . Then
f([a]20) = [a]5 = [0]5. Thus we have that 5|a if and only if a = 5b for some b ∈ Z if and only if
[a]20 = [5b]20 = [5]20[b]20 ∈ 〈[5]20〉. Therefore, ker f = 〈[5]20〉.
By the First Isomorphism Theorem, the map φ : Z20/〈[5]20〉 → Z5 defined by φ(a + 〈5〉) = f(a) is an
isomorphism.

9. (Hungerford 6.3.5) List all maximal ideals in Z6. Do the same in Z12.

Solution. Let I be an ideal of Z6.

If I contains a unit, a ∈ I then aa−1 = [1] ∈ I. Thus, for any [b] ∈ Z6 we have that [b] = [b][1] ∈ I.
Therefore I = Z6.

If I 6= Z6 then I ⊂ {[0], [2], [3], [4]} the set of non-units in Z6. Note that I must be a strict subset since
if [2], [3] ∈ I then [3] − [2] = [1] ∈ I which would imply that I = Z6. We know that [0] ∈ I. We can
check by hand that the following subsets are principal ideals:

{[0]}
{[0], [2], [4]} = 〈[2]〉 = 〈[4]〉

{[0], [3]} = 〈[3]〉

Moreover, the subset {[0], [2]}, {[0], [4]}, {[0], [3], [4]}, {[0], [2], [3]} are not ideals. Therefore, Z6 has a
total of 2 non-trivial ideals {[0], [2], [4]} and {[0], [3]}. They are both maximal.

10. (Hungerford 6.3.13)

(a) Let I ⊂ R be an ideal. Prove that I × I is an ideal in R×R.

(b) Prove that (R×R)/(I × I) is isomorphic to R/I ×R/I. (Hint : Consider the function f((a, b)) =
(a+ I, b+ I).)

Solution.

(a) Since I × I ⊂ R×R are both rings this implies that I × I is a subring.

We must show the ideal property holds. Let (a, b) ∈ R × R and (i, j) ∈ I × I. Then, ai ∈ I and
bj ∈ I since I is an ideal. Therefore, (ai, bj) ∈ I × I.
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(b) Define the function f : R × R→ R/I × R/I by f((a, b)) = (a+ I, b+ I). Then, by its definition
f is surjective.

Let (a, b), (c, d) ∈ R×R. We have that

f((a, b) + (c, d)) = f((a+ c, b+ d))

= ((a+ c) + I, (b+ d) + I)

= (a+ I, b+ I) + (c+ I, d+ I)

= f((a, b))f((c, d)),

f((a, b) · (c, d)) = f((ac, bd))

= ((ac) + I, (bd) + I)

= (a+ I, b+ I) · (c+ I, d+ I)

= f((a, b))f((c, d)).

Therefore f is a homomorphism.

The following statement follows directly: i × j ∈ I × I if and only if i + I = j + I = 0R + I. if
and only if f((i, j)) = (i+ I, j + I) = (0R + I, 0R + I). Therefore, ker f = I × I.

By the First Isomorphism Theorem, we conclude that R×R/(I × I) ∼= R/I ×R/I.

5


