MTH 310: HW 6

Instructor: Matthew Cha

Due: June 25, 2018

1. ( Hungerford 5.3.5) Verify that Q(v/3) := {a + bV/3 : a,b € Q} is a subfield of R. Then, show that
Q(+/3) is isomorphic to Q[z]/(2? — 3).
Solution. By definition, we have the set containment Q(v/3) C R.
Let a + b3, c+dvV3 € Q(\/g) We have that

(a+bV3) + (c+dV3) = (a+c) + (b+ d)V3 € Q(V3)
(a4 bV3) - (¢ +dV3) = (ac+ 3bd) + V3(ad + be) € Q(V3).

Thus, Q(v/3) is closed under addition and multiplication.
We have that 0 = 0+0v/3 € Q3 and —(a + b\/g) = —a—by/3 € Q. Therefore, Q(\/g) C R is a subring.

We can write Q[z]/(p) as the set of congruence class modulo p(x) = 22 — 3. Since we know that each
congruence class is determined by a distinct representative of degree strictly less then 2 we have

Q[]/(p) = {la + bzl : a + bz € Qla]}.

Define the map f : Q[z]/(p) — Q(v/3) by f([a + bz],) = a + bv/3. We want to show that f is an
isomorphism. Let [a + bz],, [c + dz], € Q[z]/(p). We have that

fla+bz], + [ +dz],) = f([(a+c) + (b + d)zlp)
=(a+c)+(b+d)V3
= (a+bV3) + (c+dV3)
= f(la+ba]y) + f([c + dz]y).

Since [z?%], = [3], in Q[z]/ < p > we have that

f(la+bzlplc+ daly) = f(lac+ (ad + be)z + bda®],)
= f([(ac + 3bd) + (ad + be)a],)
= (ac + 3bd) + (ad + be)\/x
= (a+bV3)(c+dV3)
= f(la+balp) f([c+ dxlp).

Thus, f respects addition and multiplication and is a homomorphism of rings.
Let a + bv/3 € Q(v/3) be a general element. Then, f is surjective since f([a + 3z],) = a + b\/3.

Let [a + bx],, [c + dz], € Q[z]/{p) and suppose f([a + bz],) = f([c + dz],). Then, a +bv/3 = c+ dv/3
and by basic arithmetic

a—c=(b—dV3.

We know that v/3 is not a rational number. If b — d # 0 then since Q is a field b — d must be a unit.
We could write /3 = +—; € Q which is a contradiction. Thus, b = d and a = ¢. Equating coefficients
we have that a + bz = ¢ + dz and thus [a + bz], = [c + dz],. Therefore, f is injective.

We have proven that f is an isomorphism.



2. (Hungerford 5.3.9) Show that Zs/(z® + x + 1) is a field and contains all three roots of z° + x + 1.

Solution. We know that Zs is a field since 2 is prime.

Let p(z) = 2® +  + 1 in Zs[z]. Since p(0) = 1 and p(1) = 13 + 1+ 1 = 1 in Zs[z] we conclude by
the Factor Theorem that p has no roots in f(z). p is degree 3 and has no roots, thus p is irreducible.
Therefore, Zs[x]/(z® + 2 + 1) is a field.

Since Zs C Zs[z]/(p) is a field extension, we can think of p(z) = 2® + x + 1 as a polynomial with
coefficients in the field Zs[z]/(p). By the Factor Theorem and its Corollary 4.17, since p(z) = 23 +z+1
is a degree 3 polynomial it can have at most 3 distinct roots in Zs[z]/(p).

Let’s check that {[z],, [#],, [2® + z],} are the three distinct roots. We will use the simple relations
[z +1]? = [2% + 1], [2® + 2 + 1], = [0],, and [27], = [z + 1],. Thus we have that
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3. (Hungerford 6.1.6) Show that the set of nonunits in Zg is an ideal.

Solution.

Recall that in a past HW we showed that [a] € Zg is either a unit or zero divisor, and [a] is a zero-divisor
if and only if the ged of (a,8) > 1. Thus, I = {[a] € Zs : [a] is a zero divisor} = {[a] € Zs : (a,8) > 1}.
We need to show that I is a subring and satisfies the ideal property.

(subring) Let [a], [b] € I and define the geds dy = (a,8) > 1 and dy = (b,8) > 1. It follows that dy, do
must be either 2 or 4 since these are the only proper divisors of 8. Thus, 2|d; and 2|ds = 2|a and
2|b = 2|a+ b and 2|ab. We have shown that the ged of (a +b,8) > 2 and (ab,8) > 2 so that a + b
and ab are a zero-divisors in Zg. Therefore, [a] + [b] € I and [a][b] € 1.

By definition [0] is a zero-divisor == [0] € I. Since a and —a have the same set of divisors this
implies that the ged (—a,8) = (a,8) > 1. Thus, [—a] € I.

Therefore by the subring theorem I is a subring.

(ideal property) Let [a] € I and [r] € Zs. Let d = (a,8) > 1 be the ged. Then, dla = d|ra. Thus,
(ra,8) > (a,8) > 1. Therefore [r][a] € I. Since Zg is commutative, we conclude that I satisfies the
ideal property.

4. (Hungerford 6.1.23) Verify that I = {0,3,6,9,12} is an ideal in Z;5 and list all distinct cosets.
Solution. Notice that we have the following set inclusions

I={[r] :0<r<15and3|r} C {[3k] : k € Z}.



Using the division algorithm, we can write 3k = 15 + r for some 0 < r < 15. It follows that
r = 3(k — 5q) so that 3|r. Therefore we have shown that

I={[3K]: k ez}

We need to show that I is a subring and has the ideal property.

(subring) Let [3k], [37] € I. We have that [3k] + [37] = [3(k + j)] € I and [3K][3;] = [3(3kj)] € I. Thus
I is closed under addition and multiplication.

If k=0 then [3k] =[3-0] =[0] € I and —[3k] = [3(—=k)] € I .
Therefore, by the subring theorem we have that I is a subring.

(ideal property) Let [a] € Z15 and [3k] € I. Then, [a][3k] = [3(ak)] € I. Since Zy5 is commutative, we
conclude that I has the ideal property.

Therefore, I is an ideal.

The cosets of I are Zy5/(I) = {[a]+1I : [a] € Z15}. We have that [a]+] = [b]+] if and only if [a—b] € T
if and only if [a — b] = [3k] for some k € Z. Thus, (a —b) — 3k =155 <= a —b=3(5j + k), that is,
a = b mod 3. Therefore, distinct cosets are equal if and only if their remainder modulo 3 are equal.
We conclude that there are three distinct cosets

Zos)(I) = {[0] + I,[1] + I,[2] + I}.

. (Hungerford 6.1.35) Let I C Z be an ideal such that (3) C I C Z. Prove that either I = (3) or
I1=7.
Solution. If I = (3) then we are done.

Suppose I # (3) and let @ € I be such that a ¢ (3). Since 3 is prime and 3 does not divide a we have
that the ged of (3,a) = 1. It follows that there are u,v € Z such that 3u + av = 1. Moreover, av € 4
and si nce 3 € (3) we have that 3 € I and 3u € I. I is a subring so 1 = 3u+ av € I.

For any a € Z we have that a = a -1 € I. Therefore I = Z.

. Let a € R and consider the evaluation homomorphism ¢ : R[z] — R where ¢(f(x)) = f(a). Find the
kernel of ¢.

Solution. By definition ker¢ = {f(x) € Rlz] : ¢(f(z)) = 0}. Thus, f(z) € ker¢ if and only if
o(f(x)) = 0 if and only if f(a) = 0. Since R is a field we can apply the Factor Theorem to see that
f(z) € ker ¢ if and only if  — a|f(z), that is f(z) = (x — a)g(x) for some g(x) € F[z]. We conclude
that the kernel of ¢ is the principal ideal generated by = — a

ker ¢ = (x — a)

. (Hungerford 6.2.12) Let I be an ideal in a noncommutative ring R such that ab — ba € I for all
a,b € R. Prove that R/I is commutative.

Solution.

By assumption ab — ba € I for all a,b € R. It follows that (ab—ba) + I =0g + I for all a,b € R.

Let a+ I,b+ I € R/I be arbitrary cosets of I. We have that

(a+DH(O+I)—(b+D(a+1I)=((ab)+I)— ((ba) +I)
= (ab—ba)+ I
=0r+1.

By definition, R/I is commutative.



8. (Hungerford 6.2.21) Use the First Isomorphism Theorem to show that Zso/([5]) is isomorphic to

10.

Zs.

Solution. Define the function f : Zog — Zs by f([a]20) = [a]s.

(well-defined) Since we define the function by its action on representatives, first we must show the
function is well defined. Suppose [a]20 = [b]20. Thats, if and only if a — b = 20k = 5(4k) for some
k € Z if and only if f([a]20) = [a]s = [b]s = f([b]20). Thus, f is well defined.

(surjective) Let [a]s € Zs. Then, f([a]zo) = [a]s thus f is surjective.
(homomorphism) Let [a]2o, [b]20 € Zao. Then,

f(lal2o + [bl20) = f([a + bl2o)
= [a+b]5
= [a]s + [b]5
= f(lal20) + f([bl20), f([al20[b]20) = f([ab]20)
= [ab]5
= [a]5[0]5
= f([al20) f([b]20)-

Therefore f is a homomorphism of rings.

(kernel) We claim that ker f = ([5]20). Notice that f([5]20) = [5]s = [0]s = [5]20 € ker f. Since
f is a homomorphism f([a]20[5]20) = [a]5]0]s = [0]s == ([5]20) C ker f. Let [a]ap € ker f. Then
f([a]20) = [a]s = [0]5. Thus we have that 5|a if and only if a = 5b for some b € Z if and only if
[a)20 = [5b]20 = [5]20[b]20 € ([5]20). Therefore, ker f = ([5]20).

By the First Isomorphism Theorem, the map ¢ : Zoo/{[5]20) — Z5 defined by ¢(a + (5)) = f(a) is an
isomorphism.

(Hungerford 6.3.5) List all maximal ideals in Zg. Do the same in Zs.

Solution. Let I be an ideal of Zg.

If I contains a unit, a € I then aa=! = [1] € I. Thus, for any [b] € Zs we have that [b] = [b][1] € I.
Therefore I = Zg.

If I # Z¢ then I C {[0],[2],[3],[4]} the set of non-units in Zg. Note that I must be a strict subset since
if [2],[3] € I then [3] — [2] = [1] € I which would imply that I = Zg. We know that [0] € I. We can
check by hand that the following subsets are principal ideals:

{[0]}
{[0]; [21 [4]} = ([2]) = ([4])
{[0, [3]} = ([3])

Moreover, the subset {[0],[2]}, {[0],[4]}, {[0],[3], [4]}, {[0],[2], [3]} are not ideals. Therefore, Zg has a
total of 2 non-trivial ideals {[0], [2], [4]} and {[0],[3]}. They are both maximal.

(Hungerford 6.3.13)

(a) Let I C R be an ideal. Prove that I x I is an ideal in R x R.

(b) Prove that (R x R)/(I x I) is isomorphic to R/I x R/I. (Hint: Consider the function f((a,b)) =
(@+1,b+1).)

Solution.

(a) Since I x I C R x R are both rings this implies that I x I is a subring.

We must show the ideal property holds. Let (a,b) € R x R and (4,j) € I x I. Then, ai € I and
bj € I since I is an ideal. Therefore, (ai,bj) € I x I.



(b) Define the function f : Rx R — R/I x R/I by f((a,b)) = (a+ I,b+ I). Then, by its definition
f is surjective.
Let (a,b),(¢,d) € R x R. We have that

f((a,b) + (¢, d)) = f((a+¢,b+d))
={(a+c)+I1,(b+d)+1I)
=(a+1,b+ 1)+ (c+1,d+1)
= f((cub))f((c, d)),

F((a,b) - (c,d)) = f((ac, bd))
= ((ac) +1I,(bd) + I)
=(a+I,b+1I) (c+1,d+1)
= f((a,0))f((c, d)).

Therefore f is a homomorphism.

The following statement follows directly: i x j € I x I if and only if i +1 =j+1 =0r + I. if
and only if f((i,5)) =G+ 1,7+ 1) =(0r + I,0r + I). Therefore, ker f =1 x I.

By the First Isomorphism Theorem, we conclude that R x R/(I x I) = R/I x R/I.



