MTH 310: HW 6

Instructor: Matthew Cha

Due: June 25, 2018

1. (Hungerford 5.3.5) Verify that $\mathbb{Q}(\sqrt{3}) := \{a + b\sqrt{3} : a, b \in \mathbb{Q}\}$ is a subfield of \mathbb{R} . Then, show that $\mathbb{Q}(\sqrt{3})$ is isomorphic to $\mathbb{Q}[x]/\langle x^2 - 3 \rangle$.

Solution. By definition, we have the set containment $\mathbb{Q}(\sqrt{3}) \subset \mathbb{R}$. Let $a + b\sqrt{3}$, $c + d\sqrt{3} \in \mathbb{Q}(\sqrt{3})$. We have that

$$(a + b\sqrt{3}) + (c + d\sqrt{3}) = (a + c) + (b + d)\sqrt{3} \in \mathbb{Q}(\sqrt{3})$$
$$(a + b\sqrt{3}) \cdot (c + d\sqrt{3}) = (ac + 3bd) + \sqrt{3}(ad + bc) \in \mathbb{Q}(\sqrt{3}).$$

Thus, $\mathbb{Q}(\sqrt{3})$ is closed under addition and multiplication.

We have that $0 = 0 + 0\sqrt{3} \in \mathbb{Q}_3$ and $-(a + b\sqrt{3}) = -a - b\sqrt{3} \in \mathbb{Q}$. Therefore, $\mathbb{Q}(\sqrt{3}) \subset \mathbb{R}$ is a subring. We can write $\mathbb{Q}[x]/\langle p \rangle$ as the set of congruence class modulo $p(x) = x^2 - 3$. Since we know that each congruence class is determined by a distinct representative of degree strictly less then 2 we have

$$\mathbb{Q}[x]/\langle p \rangle = \{ [a+bx]_p : a+bx \in \mathbb{Q}[x] \}.$$

Define the map $f : \mathbb{Q}[x]/\langle p \rangle \to \mathbb{Q}(\sqrt{3})$ by $f([a + bx]_p) = a + b\sqrt{3}$. We want to show that f is an isomorphism. Let $[a + bx]_p, [c + dx]_p \in \mathbb{Q}[x]/\langle p \rangle$. We have that

$$f([a + bx]_p + [c + dx]_p) = f([(a + c) + (b + d)x]_p)$$

= $(a + c) + (b + d)\sqrt{3}$
= $(a + b\sqrt{3}) + (c + d\sqrt{3})$
= $f([a + bx]_p) + f([c + dx]_p).$

Since $[x^2]_p = [3]_p$ in $\mathbb{Q}[x]/$ we have that

$$f([a + bx]_p[c + dx]_p) = f([ac + (ad + bc)x + bdx^2]_p)$$

= $f([(ac + 3bd) + (ad + bc)x]_p)$
= $(ac + 3bd) + (ad + bc)\sqrt{x}$
= $(a + b\sqrt{3})(c + d\sqrt{3})$
= $f([a + bx]_p)f([c + dx]_p).$

Thus, f respects addition and multiplication and is a homomorphism of rings. Let $a + b\sqrt{3} \in \mathbb{Q}(\sqrt{3})$ be a general element. Then, f is surjective since $f([a + 3x]_p) = a + b\sqrt{3}$. Let $[a + bx]_p, [c + dx]_p \in \mathbb{Q}[x]/\langle p \rangle$ and suppose $f([a + bx]_p) = f([c + dx]_p)$. Then, $a + b\sqrt{3} = c + d\sqrt{3}$ and by basic arithmetic

$$a - c = (b - d)\sqrt{3}.$$

We know that $\sqrt{3}$ is not a rational number. If $b - d \neq 0$ then since \mathbb{Q} is a field b - d must be a unit. We could write $\sqrt{3} = \frac{a-c}{b-d} \in \mathbb{Q}$ which is a contradiction. Thus, b = d and a = c. Equating coefficients we have that a + bx = c + dx and thus $[a + bx]_p = [c + dx]_p$. Therefore, f is injective.

We have proven that f is an isomorphism.

2. (Hungerford 5.3.9) Show that $\mathbb{Z}_2/\langle x^3 + x + 1 \rangle$ is a field and contains all three roots of $x^3 + x + 1$.

Solution. We know that \mathbb{Z}_2 is a field since 2 is prime.

Let $p(x) = x^3 + x + 1$ in $\mathbb{Z}_2[x]$. Since p(0) = 1 and $p(1) = 1^3 + 1 + 1 = 1$ in $\mathbb{Z}_2[x]$ we conclude by the Factor Theorem that p has no roots in f(x). p is degree 3 and has no roots, thus p is irreducible. Therefore, $\mathbb{Z}_2[x]/\langle x^3 + x + 1 \rangle$ is a field.

Since $\mathbb{Z}_2 \subset \mathbb{Z}_2[x]/\langle p \rangle$ is a field extension, we can think of $p(x) = x^3 + x + 1$ as a polynomial with coefficients in the field $\mathbb{Z}_2[x]/\langle p \rangle$. By the Factor Theorem and its Corollary 4.17, since $p(x) = x^3 + x + 1$ is a degree 3 polynomial it can have at most 3 distinct roots in $\mathbb{Z}_2[x]/\langle p \rangle$.

Let's check that $\{[x]_p, [x^2]_p, [x^2 + x]_p\}$ are the three distinct roots. We will use the simple relations $[x+1]^2 = [x^2+1], [x^3+x+1]_p = [0]_p$, and $[x^3]_p = [x+1]_p$. Thus we have that

$$\begin{split} p([x]_p) &= [x]_p^3 + [x]_p + [1]_p \\ &= [x^3 + x + 1]_p \\ &= [0]_p \\ p([x^2]_p) &= [x^2]_p^3 + [x^2]_p + [1]_p \\ &= [x^3]_p^2 + [x^2]_p + [1]_p \\ &= [x+1]_p^2 + [x^2]_p + [1]_p \\ &= [x^2 + 1]_p + [x^2 + 1]_p \\ &= [0]_p \\ p([x^2 + x]_p) &= [x^2 + x]_p^3 + [x^2 + x]_p + [1]_p \\ &= [(x+1)^3]_p = [x^2 + x + 1]_p \\ &= [(x+1)^4]_p + [x^2 + x + 1]_p \\ &= [(x^2 + 1)(x^2 + 1)]_p + [x^2 + x + 1]_p \\ &= [(x+1)x + 1]_p + [x^2 + x + 1]_p \\ &= [x^2 + x + 1]_p + [x^2 + x + 1]_p \\ &= [x^2 + x + 1]_p + [x^2 + x + 1]_p \\ &= [x^2 + x + 1]_p + [x^2 + x + 1]_p \\ &= [0]_p. \end{split}$$

3. (Hungerford 6.1.6) Show that the set of nonunits in \mathbb{Z}_8 is an ideal.

Solution.

Recall that in a past HW we showed that $[a] \in \mathbb{Z}_8$ is either a unit or zero divisor, and [a] is a zero-divisor if and only if the gcd of (a, 8) > 1. Thus, $I = \{[a] \in \mathbb{Z}_8 : [a] \text{ is a zero divisor}\} = \{[a] \in \mathbb{Z}_8 : (a, 8) > 1\}$. We need to show that I is a subring and satisfies the ideal property.

(subring) Let $[a], [b] \in I$ and define the gcds $d_1 = (a, 8) > 1$ and $d_2 = (b, 8) > 1$. It follows that d_1, d_2 must be either 2 or 4 since these are the only proper divisors of 8. Thus, $2|d_1$ and $2|d_2 \implies 2|a$ and $2|b \implies 2|a + b$ and 2|ab. We have shown that the gcd of $(a + b, 8) \ge 2$ and $(ab, 8) \ge 2$ so that a + b and ab are a zero-divisors in \mathbb{Z}_8 . Therefore, $[a] + [b] \in I$ and $[a][b] \in I$.

By definition [0] is a zero-divisor $\implies [0] \in I$. Since a and -a have the same set of divisors this implies that the gcd (-a, 8) = (a, 8) > 1. Thus, $[-a] \in I$.

Therefore by the subring theorem I is a subring.

(*ideal property*) Let $[a] \in I$ and $[r] \in \mathbb{Z}_8$. Let d = (a, 8) > 1 be the gcd. Then, $d|a \implies d|ra$. Thus, $(ra, 8) \ge (a, 8) > 1$. Therefore $[r][a] \in I$. Since \mathbb{Z}_8 is commutative, we conclude that I satisfies the ideal property.

4. (Hungerford 6.1.23) Verify that $I = \{0, 3, 6, 9, 12\}$ is an ideal in \mathbb{Z}_{15} and list all distinct cosets.

Solution. Notice that we have the following set inclusions

$$I = \{ [r] : 0 \le r < 15 \text{ and } 3 | r \} \subset \{ [3k] : k \in \mathbb{Z} \}.$$

Using the division algorithm, we can write 3k = 15q + r for some $0 \le r < 15$. It follows that r = 3(k - 5q) so that 3|r. Therefore we have shown that

$$I = \{ [3k] : k \in \mathbb{Z} \}.$$

We need to show that I is a subring and has the ideal property.

(subring) Let $[3k], [3j] \in I$. We have that $[3k] + [3j] = [3(k+j)] \in I$ and $[3k][3j] = [3(3kj)] \in I$. Thus I is closed under addition and multiplication.

If k = 0 then $[3k] = [3 \cdot 0] = [0] \in I$ and $-[3k] = [3(-k)] \in I$.

Therefore, by the subring theorem we have that I is a subring.

(ideal property) Let $[a] \in \mathbb{Z}_{15}$ and $[3k] \in I$. Then, $[a][3k] = [3(ak)] \in I$. Since \mathbb{Z}_{15} is commutative, we conclude that I has the ideal property.

Therefore, I is an ideal.

The cosets of I are $\mathbb{Z}_{15}/\langle I \rangle = \{[a] + I : [a] \in \mathbb{Z}_{15}\}$. We have that [a] + I = [b] + I if and only if [a - b] = [3k] for some $k \in \mathbb{Z}$. Thus, $(a - b) - 3k = 15j \iff a - b = 3(5j + k)$, that is, $a \equiv b \mod 3$. Therefore, distinct cosets are equal if and only if their remainder modulo 3 are equal. We conclude that there are three distinct cosets

$$\mathbb{Z}_{15}/\langle I \rangle = \{ [0] + I, [1] + I, [2] + I \}.$$

5. (Hungerford 6.1.35) Let $I \subset \mathbb{Z}$ be an ideal such that $\langle 3 \rangle \subset I \subset \mathbb{Z}$. Prove that either $I = \langle 3 \rangle$ or $I = \mathbb{Z}$.

Solution. If $I = \langle 3 \rangle$ then we are done.

Suppose $I \neq \langle 3 \rangle$ and let $a \in I$ be such that $a \notin \langle 3 \rangle$. Since 3 is prime and 3 does not divide a we have that the gcd of (3, a) = 1. It follows that there are $u, v \in \mathbb{Z}$ such that 3u + av = 1. Moreover, $av \in i$ and since $3 \in \langle 3 \rangle$ we have that $3 \in I$ and $3u \in I$. I is a subring so $1 = 3u + av \in I$.

For any $a \in \mathbb{Z}$ we have that $a = a \cdot 1 \in I$. Therefore $I = \mathbb{Z}$.

6. Let $a \in \mathbb{R}$ and consider the evaluation homomorphism $\phi : \mathbb{R}[x] \to \mathbb{R}$ where $\phi(f(x)) = f(a)$. Find the kernel of ϕ .

Solution. By definition ker $\phi = \{f(x) \in \mathbb{R}[x] : \phi(f(x)) = 0\}$. Thus, $f(x) \in \ker \phi$ if and only if $\phi(f(x)) = 0$ if and only if f(a) = 0. Since \mathbb{R} is a field we can apply the Factor Theorem to see that $f(x) \in \ker \phi$ if and only if x - a|f(x), that is f(x) = (x - a)g(x) for some $g(x) \in F[x]$. We conclude that the kernel of ϕ is the principal ideal generated by x - a

$$\ker \phi = \langle x - a \rangle$$

7. (Hungerford 6.2.12) Let I be an ideal in a noncommutative ring R such that $ab - ba \in I$ for all $a, b \in R$. Prove that R/I is commutative.

Solution.

By assumption $ab - ba \in I$ for all $a, b \in R$. It follows that $(ab - ba) + I = 0_R + I$ for all $a, b \in R$. Let $a + I, b + I \in R/I$ be arbitrary cosets of I. We have that

$$(a+I)(b+I) - (b+I)(a+I) = ((ab) + I) - ((ba) + I)$$

= $(ab - ba) + I$
= $0_R + I$.

By definition, R/I is commutative.

8. (Hungerford 6.2.21) Use the First Isomorphism Theorem to show that $\mathbb{Z}_{20}/\langle [5] \rangle$ is isomorphic to \mathbb{Z}_5 .

Solution. Define the function $f : \mathbb{Z}_{20} \to \mathbb{Z}_5$ by $f([a]_{20}) = [a]_5$.

(well-defined) Since we define the function by its action on representatives, first we must show the function is well defined. Suppose $[a]_2 0 = [b]_2 0$. Thats, if and only if a - b = 20k = 5(4k) for some $k \in \mathbb{Z}$ if and only if $f([a]_{20}) = [a]_5 = [b]_5 = f([b]_{20})$. Thus, f is well defined.

(surjective) Let $[a]_5 \in \mathbb{Z}_5$. Then, $f([a]_{20}) = [a]_5$ thus f is surjective.

(homomorphism) Let $[a]_{20}, [b]_{20} \in \mathbb{Z}_{20}$. Then,

$$f([a]_{20} + [b]_{20}) = f([a + b]_{20})$$

$$= [a + b]_5$$

$$= [a]_5 + [b]_5$$

$$= f([a]_{20}) + f([b]_{20}), f([a]_{20}[b]_{20}) = f([ab]_{20})$$

$$= [ab]_5$$

$$= [a]_5[b]_5$$

$$= f([a]_{20})f([b]_{20}).$$

Therefore f is a homomorphism of rings.

(kernel) We claim that ker $f = \langle [5]_{20} \rangle$. Notice that $f([5]_{20}) = [5]_5 = [0]_5 \implies [5]_{20} \in \text{ker } f$. Since f is a homomorphism $f([a]_{20}[5]_{20}) = [a]_5[0]_5 = [0]_5 \implies \langle [5]_{20} \rangle \subset \text{ker } f$. Let $[a]_{20} \in \text{ker } f$. Then $f([a]_{20}) = [a]_5 = [0]_5$. Thus we have that 5|a if and only if a = 5b for some $b \in \mathbb{Z}$ if and only if $[a]_{20} = [5b]_{20} = [5]_{20}[b]_{20} \in \langle [5]_{20} \rangle$. Therefore, ker $f = \langle [5]_{20} \rangle$.

By the First Isomorphism Theorem, the map $\phi : \mathbb{Z}_{20}/\langle [5]_{20} \rangle \to \mathbb{Z}_5$ defined by $\phi(a + \langle 5 \rangle) = f(a)$ is an isomorphism.

9. (Hungerford 6.3.5) List all maximal ideals in \mathbb{Z}_6 . Do the same in \mathbb{Z}_{12} .

Solution. Let *I* be an ideal of \mathbb{Z}_6 .

If I contains a unit, $a \in I$ then $aa^{-1} = [1] \in I$. Thus, for any $[b] \in \mathbb{Z}_6$ we have that $[b] = [b][1] \in I$. Therefore $I = \mathbb{Z}_6$.

If $I \neq \mathbb{Z}_6$ then $I \subset \{[0], [2], [3], [4]\}$ the set of non-units in \mathbb{Z}_6 . Note that I must be a strict subset since if $[2], [3] \in I$ then $[3] - [2] = [1] \in I$ which would imply that $I = \mathbb{Z}_6$. We know that $[0] \in I$. We can check by hand that the following subsets are principal ideals:

$$\{[0]\} \\ \{[0], [2], [4]\} = \langle [2] \rangle = \langle [4] \rangle \\ \{[0], [3]\} = \langle [3] \rangle$$

Moreover, the subset $\{[0], [2]\}, \{[0], [4]\}, \{[0], [3], [4]\}, \{[0], [2], [3]\}$ are not ideals. Therefore, \mathbb{Z}_6 has a total of 2 non-trivial ideals $\{[0], [2], [4]\}$ and $\{[0], [3]\}$. They are both maximal.

10. (Hungerford 6.3.13)

- (a) Let $I \subset R$ be an ideal. Prove that $I \times I$ is an ideal in $R \times R$.
- (b) Prove that $(R \times R)/(I \times I)$ is isomorphic to $R/I \times R/I$. (*Hint*: Consider the function f((a, b)) = (a + I, b + I).)

Solution.

- (a) Since $I \times I \subset R \times R$ are both rings this implies that $I \times I$ is a subring.
 - We must show the ideal property holds. Let $(a, b) \in R \times R$ and $(i, j) \in I \times I$. Then, $ai \in I$ and $bj \in I$ since I is an ideal. Therefore, $(ai, bj) \in I \times I$.

(b) Define the function $f: R \times R \to R/I \times R/I$ by f((a, b)) = (a + I, b + I). Then, by its definition f is surjective.

Let $(a, b), (c, d) \in \mathbb{R} \times \mathbb{R}$. We have that

$$\begin{aligned} f((a,b) + (c,d)) &= f((a+c,b+d)) \\ &= ((a+c) + I, (b+d) + I) \\ &= (a+I,b+I) + (c+I,d+I) \\ &= f((a,b))f((c,d)), \\ f((a,b) \cdot (c,d)) &= f((ac,bd)) \\ &= ((ac) + I, (bd) + I) \\ &= (a+I,b+I) \cdot (c+I,d+I) \\ &= f((a,b))f((c,d)). \end{aligned}$$

Therefore f is a homomorphism.

The following statement follows directly: $i \times j \in I \times I$ if and only if $i + I = j + I = 0_R + I$. if and only if $f((i, j)) = (i + I, j + I) = (0_R + I, 0_R + I)$. Therefore, ker $f = I \times I$. By the First Isomorphism Theorem, we conclude that $R \times R/(I \times I) \cong R/I \times R/I$.