MTH 310: HW 6

Instructor: Matthew Cha

Due: June 25, 2018

- 1. (Hungerford 5.3.5) Verify that $\mathbb{Q}(\sqrt{3}) := \{a + b\sqrt{3} : a, b \in \mathbb{Q}\}$ is a subfield of \mathbb{R} . Then, show that $\mathbb{Q}(\sqrt{3})$ is isomorphic to $\mathbb{Q}[x]/\langle x^2 3 \rangle$.
- 2. (Hungerford 5.3.9) Show that $\mathbb{Z}_2/\langle x^3 + x + 1 \rangle$ is a field and contains all three roots of $x^3 + x + 1$.
- 3. (Hungerford 6.1.6) Show that the set of nonunits in \mathbb{Z}_8 is an ideal.
- 4. (Hungerford 6.1.23) Verify that $I = \{0, 3, 6, 9, 12\}$ is an ideal in \mathbb{Z}_{15} and list all distinct cosets.
- 5. (Hungerford 6.1.35) Let $I \subset \mathbb{Z}$ be an ideal such that $\langle 3 \rangle \subset I \subset \mathbb{Z}$. Prove that either $I = \langle 3 \rangle$ or $I = \mathbb{Z}$.
- 6. Let $a \in \mathbb{R}$ and consider the evaluation homomorphism $\phi : \mathbb{R}[x] \to \mathbb{R}$ where $\phi(f(x)) = f(a)$. Find the kernel of ϕ .
- 7. (Hungerford 6.2.12) Let I be an ideal in a noncommutative ring R such that $ab ba \in I$ for all $a, b \in R$. Prove that R/I is commutative.
- 8. (Hungerford 6.2.21) Use the First Isomorphism Theorem to show that $\mathbb{Z}_{20}/\langle 5 \rangle$ is isomorphic to \mathbb{Z}_5 .
- 9. (Hungerford 6.3.5) List all maximal ideals in \mathbb{Z}_6 . Do the same in \mathbb{Z}_{12} .
- 10. (Hungerford 6.3.13)
 - (a) Let $I \subset R$ be an ideal. Prove that $I \times I$ is an ideal in $R \times R$.
 - (b) Prove that $(R \times R)/(I \times I)$ is isomorphic to $R/I \times R/I$. (*Hint*: Consider the function f((a, b)) = (a + I, b + I).)