
MTH 310: HW 5

Instructor: Matthew Cha

Due: June 18, 2018

1. Find all irreducible polynomials of degree 5 in Z2[x]. (Hint : There are six of them.)

Solution. All degree 5 polynomials take the form {x5 + ax4 + bx3 + cx2 + dx + e : a, b, c, d, e ∈ Z2}.
Thus, there are 25 = 32 degree 5 polynomials in Z2[x].

Any polynomial in Z2[x] with a zero constant coefficient has a factor of x and is reducible. Any
polynomial with an even number of non-zero coefficients has a root of 1 and thus is reducible by the
factor theorem. This leaves us with 8 possible choices: x5 +x3 + 1, x5 +x2 + 1, x5 +x+ 1, x5 +x4 +
x3 + x2 + 1, x5 + x4 + x3 + x + 1, x5 + x4 + x2 + x + 1, x5 + x3 + x2 + x + 1.

We can check by hand that none of these have a root in Z2. Moreover, by the degree formula we have
that a degree 5 polynomial with no linear factor is reducible if and only if it has exactly one irreducible
degree 2 factor and one irreducible degree 3 factor.

We proved in class that the irreducible factors of degree 2 and 3 are: x2 + x + 1, x3 + x + 1 and
x3 + x2 + 1.

Thus the following polynomials are reducible:

(x2 + x + 1)(x3 + x2 + 1) = x5 + x + 1

(x2 + x + 1)(x3 + x + 1) = x5 + x4 + 1.

We are left with 6 irreducible polynomials of degree 5:

x5 + x2 + 1

x5 + x3 + 1

x5 + x4 + x3 + x2 + 1

x5 + x4 + x3 + x + 1

x5 + x4 + x2 + x + 1

x5 + x3 + x2 + x + 1

2. (Hungerford 4.3.21) Find a non-constant polynomial in Z9[x] that is a unit.

Solution. Recall that [3]9[6]9 = [18]9 = [0]9. We have that

(3x + 1)(6x + 1) = 18x2 + 9x + 1 = 1 in Z9[x].

Thus, 3x + 1 is a unit in Z9[x].

3. (Hungerford 4.4.4) For what value of k is x + 1 a factor of x4 + 2x3 − 3x2 + kx + 1 in Z5[x].

Solution. By the factor theorem, if x+ 1 is a factor if and only if [−1] = [4] is a root. Evaluating the
polynomial at x = [4] and setting to 0 gives

[0] = [4]4 + 2[4]3 − 3[4]2 + k[4] + 1

= [1] + [3] + [2] + [4k] + [1]

= [4k + 2].

Thus, if 5|4k + 2 then [4] is a root. This occurs for k = 2.
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4. (Hungerford 4.4.19) We say that a ∈ F is a multiple root of f(x) ∈ F [x] if (x − a)k is a factor of
f(x) for some k ≥ 2. Prove that a ∈ R is a multiple root of f(x) ∈ R[x] if and only if a is a root of
both f(x) and f ′(x), where f ′(x) is the derivative of f(x). You may use standard properties of the
derivative like the product rule.

Solution. ( =⇒ ) Let a ∈ R be a multiple root of f(x) ∈ F [x] and write f(x) = (x− a)kg(x) for some
g(x) ∈ R[x] and k ≥ 2. We can calculate the derivative by the product rule

f ′(x) = k(x− a)k−1g(x) + (x− a)kg′(x)

where k− 1 ≥ 1. Thus, f ′(a) = k(a− a)k−1g(x) + (a− a)kg′(a) = 0. Therefore a is a root of f(x) and
f ′(x).

(⇐= ) Suppose a is a root of f(x) and f ′(x). By the factor theorem, we can write f(x) = (x− a)g(x)
and f ′(x) = (x − a)h(x) for some g(x), h(x) ∈ R[x]. We can compute the derivative by the product
rule

f ′(x) = g(x) + (x− a)g′(x).

By substitution we conclude that

g(x) + (x− a)g′(x) = (x− a)h(x).

Thus, x− a|g(x). It follows that f(x) = (x− a)g(x) = (x− a)2k(x) for some k(x) ∈ R[x]. Thus, a is a
multiple root of f(x).

5. The Factor Theorem as proved in class has many corollaries to it. Read through Corollary 4.17, 4.18,
4.19, and 4.20 in the text and summarize the results.

Solution. See Hungerford.

6. Rational Root Test: Let f(x) = anx
n +an−1x

n−1 + · · · a1x+a0 where ai ∈ Z for each i. Let r, s ∈ Z
with r 6= 0 and the gcd of (r, s) = 1. Show that if r

s is a root, that is, f( r
s ) = 0 then r|a0 and s|an.

Solution. See Hungerford, Theorem 4.21.

7. (Hungerford 5.1.6) Let a ∈ F and f(x) ∈ F [x].

(a) Show that f(x) ≡ f(a) mod (x− a).

(b) Use (a) to show that x3 + 2 ≡ x4 + 2x2 + 1 mod (x− 2) in Z5.

This problem shows that the congruence class of f(x) modulo x− a is determined only by the value of
the polynomial when evaluated at a.

Solution.

(a) By the Division Algorithm ∃! q(x), r(x) ∈ F [x] such that f(x) = (x−a)q(x)+r(x) with deg r(x) =
0 or r(x) = 0F and thus, r(x) = r is a constant polynomial in F . Evaluating at a we have that
f(a) = (a − a)q(a) + r = r. It follows that [f(x)] = [r] = [f(a)] if and only if f(x) ≡ f(a)
mod (x− a).

(b) Let f(x) = x3 + 2 and g(x) = x4 + 2x2 + 1 in Z5[x]. Notice that f(2) = 0 and g(2) = 0 in Z5[x].
Thus, by (a) we conclude that f(x) ≡ 0 mod (x− 2) and g(x) ≡ 0 mod (x− 2). By symmetry
and transitivity of congruence, we conclude that f(x) ≡ g(x) mod (x− 2).

8. (Hungerford 5.1.12) Let f(x), p(x) ∈ F [x]. If f(x) is relatively prime to p(x), prove that there is a
g(x) ∈ F [x] such that f(x)g(x) ≡ 1F mod p(x).

Solution. Suppose (f(x), p(x)) = 1F . Then, there exist u(x), v(x) ∈ F [x] such that f(x)u(x) +
p(x)v(x) = 1. Moreover, f(x)u(x)− 1F = p(x)v(x) =⇒ f(x)u(x) ≡ 1F mod p(x).
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9. Write out the addition and multiplication tables for the ring Z2[x]/(x2 + x). Is Z2[x]/(x2 + x) a field?

Solution. We have that Z2[x]/(x2 + x) = {[0], [1], [x], [x + 1]} where [f ] is a congruence class modulo
x2 + x.

+ [0] [1] [x] [x + 1]
[0] [0] [1] [x] [x + 1]
[1] [1] [0] [x + 1] [x]
[x] [x] [x + 1] [0] [1]
[x + 1] [x + 1] [x] [1] [0]

The tables are filed by definition of modular arithmetic. The last entries in the multiplication table
must be calculated by division and remainder

x2 = (x2 + x) + x =⇒ [x]2 = [x]

(x + 1)2 = (x2 + x) + (x + 1) =⇒ [x + 1]2 = [x + 1].

x(x + 1) = x2 + x =⇒ [x][x + 1] = [0]

· [0] [1] [x] [x + 1]
[0] [0] [0] [0] [0]
[1] [0] [1] [x] [x + 1]
[x] [0] [x] [x] [0]
[x + 1] [0] [x + 1] [0] [x + 1]

.

Since [x] is not a unit, as is made clear by the multiplication table, this implies that Z2[x]/(x2 + x) is
not a field.

10. In Z2[x]/(x3 + x + 1), find the multiplicative inverse of [x + 1].

Solution. Since x3 + x+ 1 is irreducible in Z2[x] we know that the gcd of (x3 + x+ 1, x+ 1) = 1. We
want to write 1 = (x + 1)u(x) + (x3 + x + 1)v(x) for some u(x), v(x) ∈ Z2[x].

We can apply the Euclidean algorithm as follows

x3 + x + 1 = (x + 1)(x2 + x) + 1

Therefore, 1 = (x3 + x + 1)− (x + 1)(x2 + x) and we conclude that [x + 1]−1 = [x2 + x].

11. (EC–worth .5% of final grade) Let p > 2 be prime and consider the function f : Zp → Zp defined
by f(x) = x2. Let f(Zp) denote the image of f and find the cardinality |f(Zp)|. [Hint : a ∈ f(Zp) if
and only if the polynomial x2 − a is reducible in Zp[x].]

Solution. Let’s prove the hint: a ∈ f(Zp) if and only if f(x) = a for some x ∈ Zp if and only if x2 = a
or x2 − a = 0. Thus, the polynomial x2 − a has a root. By the Factor theorem thats if and only if
x2 − a is reducible.

x2 − a is reducible if and only if, by the factor theorem and degree formula, it has exactly two linear
factors. That is, there exist b, c ∈ Zp such that x2 − a = (x− b)(x− c) = x2 − (b + c) + bc. Equating
coefficients we conclude that b + c = 0 and a = bc in Zp. By substitution we have

a ≡ b(−b) mod p

Since our logic was exactly reversible using if and only if statements we have shown that

f(Zp) = {[a] = [b][−b] : b ∈ Zp}.

If p > 2 then b ≡ −b mod p if and only if b ≡ 0 mod p. Thus, there are exactly p−1
2 non-zero pairs

[b], [−b] such that [b][−b] ∈ f(Zp) and [0][0] ∈ f(Zp). Therefore, |f(Z)| = p−1
2 + 1 = p+1

2 .
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