MTH 310: HW 5

Instructor: Matthew Cha

Due: June 18, 2018

1. Find all irreducible polynomials of degree 5 in $\mathbb{Z}_{2}[x]$. (Hint: There are six of them.)

Solution. All degree 5 polynomials take the form $\left\{x^{5}+a x^{4}+b x^{3}+c x^{2}+d x+e: a, b, c, d, e \in \mathbb{Z}_{2}\right\}$. Thus, there are $2^{5}=32$ degree 5 polynomials in $\mathbb{Z}_{2}[x]$.
Any polynomial in $\mathbb{Z}_{2}[x]$ with a zero constant coefficient has a factor of x and is reducible. Any polynomial with an even number of non-zero coefficients has a root of 1 and thus is reducible by the factor theorem. This leaves us with 8 possible choices: $x^{5}+x^{3}+1, x^{5}+x^{2}+1, x^{5}+x+1, x^{5}+x^{4}+$ $x^{3}+x^{2}+1, x^{5}+x^{4}+x^{3}+x+1, x^{5}+x^{4}+x^{2}+x+1, x^{5}+x^{3}+x^{2}+x+1$.
We can check by hand that none of these have a root in \mathbb{Z}_{2}. Moreover, by the degree formula we have that a degree 5 polynomial with no linear factor is reducible if and only if it has exactly one irreducible degree 2 factor and one irreducible degree 3 factor.
We proved in class that the irreducible factors of degree 2 and 3 are: $x^{2}+x+1, x^{3}+x+1$ and $x^{3}+x^{2}+1$.
Thus the following polynomials are reducible:

$$
\begin{aligned}
& \left(x^{2}+x+1\right)\left(x^{3}+x^{2}+1\right)=x^{5}+x+1 \\
& \left(x^{2}+x+1\right)\left(x^{3}+x+1\right)=x^{5}+x^{4}+1
\end{aligned}
$$

We are left with 6 irreducible polynomials of degree 5 :

$$
\begin{aligned}
& x^{5}+x^{2}+1 \\
& x^{5}+x^{3}+1 \\
& x^{5}+x^{4}+x^{3}+x^{2}+1 \\
& x^{5}+x^{4}+x^{3}+x+1 \\
& x^{5}+x^{4}+x^{2}+x+1 \\
& x^{5}+x^{3}+x^{2}+x+1
\end{aligned}
$$

2. (Hungerford 4.3.21) Find a non-constant polynomial in $\mathbb{Z}_{9}[x]$ that is a unit.

Solution. Recall that $[3]_{9}[6]_{9}=[18]_{9}=[0]_{9}$. We have that

$$
(3 x+1)(6 x+1)=18 x^{2}+9 x+1=1 \quad \text { in } \quad \mathbb{Z}_{9}[x] .
$$

Thus, $3 x+1$ is a unit in $\mathbb{Z}_{9}[x]$.
3. (Hungerford 4.4.4) For what value of k is $x+1$ a factor of $x^{4}+2 x^{3}-3 x^{2}+k x+1$ in $\mathbb{Z}_{5}[x]$.

Solution. By the factor theorem, if $x+1$ is a factor if and only if $[-1]=[4]$ is a root. Evaluating the polynomial at $x=[4]$ and setting to 0 gives

$$
\begin{aligned}
{[0] } & =[4]^{4}+2[4]^{3}-3[4]^{2}+k[4]+1 \\
& =[1]+[3]+[2]+[4 k]+[1] \\
& =[4 k+2] .
\end{aligned}
$$

Thus, if $5 \mid 4 k+2$ then [4] is a root. This occurs for $k=2$.
4. (Hungerford 4.4.19) We say that $a \in F$ is a multiple root of $f(x) \in F[x]$ if $(x-a)^{k}$ is a factor of $f(x)$ for some $k \geq 2$. Prove that $a \in \mathbb{R}$ is a multiple root of $f(x) \in \mathbb{R}[x]$ if and only if a is a root of both $f(x)$ and $f^{\prime}(x)$, where $f^{\prime}(x)$ is the derivative of $f(x)$. You may use standard properties of the derivative like the product rule.

Solution. (\Longrightarrow) Let $a \in \mathbb{R}$ be a multiple root of $f(x) \in F[x]$ and write $f(x)=(x-a)^{k} g(x)$ for some $g(x) \in \mathbb{R}[x]$ and $k \geq 2$. We can calculate the derivative by the product rule

$$
f^{\prime}(x)=k(x-a)^{k-1} g(x)+(x-a)^{k} g^{\prime}(x)
$$

where $k-1 \geq 1$. Thus, $f^{\prime}(a)=k(a-a)^{k-1} g(x)+(a-a)^{k} g^{\prime}(a)=0$. Therefore a is a root of $f(x)$ and $f^{\prime}(x)$.
(\Longleftarrow) Suppose a is a root of $f(x)$ and $f^{\prime}(x)$. By the factor theorem, we can write $f(x)=(x-a) g(x)$ and $f^{\prime}(x)=(x-a) h(x)$ for some $g(x), h(x) \in \mathbb{R}[x]$. We can compute the derivative by the product rule

$$
f^{\prime}(x)=g(x)+(x-a) g^{\prime}(x)
$$

By substitution we conclude that

$$
g(x)+(x-a) g^{\prime}(x)=(x-a) h(x) .
$$

Thus, $x-a \mid g(x)$. It follows that $f(x)=(x-a) g(x)=(x-a)^{2} k(x)$ for some $k(x) \in \mathbb{R}[x]$. Thus, a is a multiple root of $f(x)$.
5. The Factor Theorem as proved in class has many corollaries to it. Read through Corollary 4.17, 4.18, 4.19 , and 4.20 in the text and summarize the results.

Solution. See Hungerford.
6. Rational Root Test: Let $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots a_{1} x+a_{0}$ where $a_{i} \in \mathbb{Z}$ for each i. Let $r, s \in \mathbb{Z}$ with $r \neq 0$ and the gcd of $(r, s)=1$. Show that if $\frac{r}{s}$ is a root, that is, $f\left(\frac{r}{s}\right)=0$ then $r \mid a_{0}$ and $s \mid a_{n}$.

Solution. See Hungerford, Theorem 4.21.
7. (Hungerford 5.1.6) Let $a \in F$ and $f(x) \in F[x]$.
(a) Show that $f(x) \equiv f(a) \bmod (x-a)$.
(b) Use (a) to show that $x^{3}+2 \equiv x^{4}+2 x^{2}+1 \bmod (x-2)$ in \mathbb{Z}_{5}.

This problem shows that the congruence class of $f(x)$ modulo $x-a$ is determined only by the value of the polynomial when evaluated at a.

Solution.

(a) By the Division Algorithm \exists ! $q(x), r(x) \in F[x]$ such that $f(x)=(x-a) q(x)+r(x)$ with $\operatorname{deg} r(x)=$ 0 or $r(x)=0_{F}$ and thus, $r(x)=r$ is a constant polynomial in F. Evaluating at a we have that $f(a)=(a-a) q(a)+r=r$. It follows that $[f(x)]=[r]=[f(a)]$ if and only if $f(x) \equiv f(a)$ $\bmod (x-a)$.
(b) Let $f(x)=x^{3}+2$ and $g(x)=x^{4}+2 x^{2}+1$ in $\mathbb{Z}_{5}[x]$. Notice that $f(2)=0$ and $g(2)=0$ in $\mathbb{Z}_{5}[x]$. Thus, by (a) we conclude that $f(x) \equiv 0 \bmod (x-2)$ and $g(x) \equiv 0 \bmod (x-2)$. By symmetry and transitivity of congruence, we conclude that $f(x) \equiv g(x) \bmod (x-2)$.
8. (Hungerford 5.1.12) Let $f(x), p(x) \in F[x]$. If $f(x)$ is relatively prime to $p(x)$, prove that there is a $g(x) \in F[x]$ such that $f(x) g(x) \equiv 1_{F} \bmod p(x)$.

Solution. Suppose $(f(x), p(x))=1_{F}$. Then, there exist $u(x), v(x) \in F[x]$ such that $f(x) u(x)+$ $p(x) v(x)=1$. Moreover, $f(x) u(x)-1_{F}=p(x) v(x) \Longrightarrow f(x) u(x) \equiv 1_{F} \bmod p(x)$.
9. Write out the addition and multiplication tables for the ring $\mathbb{Z}_{2}[x] /\left(x^{2}+x\right)$. Is $\mathbb{Z}_{2}[x] /\left(x^{2}+x\right)$ a field?

Solution. We have that $\mathbb{Z}_{2}[x] /\left(x^{2}+x\right)=\{[0],[1],[x],[x+1]\}$ where $[f]$ is a congruence class modulo $x^{2}+x$.

+	$[0]$	$[1]$	$[x]$	$[x+1]$
$[0]$	$[0]$	$[1]$	$[x]$	$[x+1]$
$[1]$	$[1]$	$[0]$	$[x+1]$	$[x]$
$[x]$	$[x]$	$[x+1]$	$[0]$	$[1]$
$[x+1]$	$[x+1]$	$[x]$	$[1]$	$[0]$

The tables are filed by definition of modular arithmetic. The last entries in the multiplication table must be calculated by division and remainder

$$
\begin{aligned}
& x^{2}=\left(x^{2}+x\right)+x \quad \Longrightarrow \quad[x]^{2}=[x] \\
& (x+1)^{2}=\left(x^{2}+x\right)+(x+1) \quad \Longrightarrow[x+1]^{2}=[x+1] \text {. } \\
& x(x+1)=x^{2}+x \quad \Longrightarrow[x][x+1]=[0]
\end{aligned}
$$

Since $[x]$ is not a unit, as is made clear by the multiplication table, this implies that $\mathbb{Z}_{2}[x] /\left(x^{2}+x\right)$ is not a field.
10. In $\mathbb{Z}_{2}[x] /\left(x^{3}+x+1\right)$, find the multiplicative inverse of $[x+1]$.

Solution. Since $x^{3}+x+1$ is irreducible in $\mathbb{Z}_{2}[x]$ we know that the gcd of $\left(x^{3}+x+1, x+1\right)=1$. We want to write $1=(x+1) u(x)+\left(x^{3}+x+1\right) v(x)$ for some $u(x), v(x) \in \mathbb{Z}_{2}[x]$.
We can apply the Euclidean algorithm as follows

$$
x^{3}+x+1=(x+1)\left(x^{2}+x\right)+1
$$

Therefore, $1=\left(x^{3}+x+1\right)-(x+1)\left(x^{2}+x\right)$ and we conclude that $[x+1]^{-1}=\left[x^{2}+x\right]$.
11. (EC-worth $\mathbf{. 5 \%}$ of final grade) Let $p>2$ be prime and consider the function $f: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ defined by $f(x)=x^{2}$. Let $f\left(\mathbb{Z}_{p}\right)$ denote the image of f and find the cardinality $\left|f\left(\mathbb{Z}_{p}\right)\right|$. [Hint: a $\in f\left(\mathbb{Z}_{p}\right)$ if and only if the polynomial $x^{2}-a$ is reducible in $\left.\mathbb{Z}_{p}[x].\right]$

Solution. Let's prove the hint: $a \in f\left(\mathbb{Z}_{p}\right)$ if and only if $f(x)=a$ for some $x \in \mathbb{Z}_{p}$ if and only if $x^{2}=a$ or $x^{2}-a=0$. Thus, the polynomial $x^{2}-a$ has a root. By the Factor theorem thats if and only if $x^{2}-a$ is reducible.
$x^{2}-a$ is reducible if and only if, by the factor theorem and degree formula, it has exactly two linear factors. That is, there exist $b, c \in \mathbb{Z}_{p}$ such that $x^{2}-a=(x-b)(x-c)=x^{2}-(b+c)+b c$. Equating coefficients we conclude that $b+c=0$ and $a=b c$ in \mathbb{Z}_{p}. By substitution we have

$$
a \equiv b(-b) \quad \bmod p
$$

Since our logic was exactly reversible using if and only if statements we have shown that

$$
f\left(\mathbb{Z}_{p}\right)=\left\{[a]=[b][-b]: b \in \mathbb{Z}_{p}\right\}
$$

If $p>2$ then $b \equiv-b \bmod p$ if and only if $b \equiv 0 \bmod p$. Thus, there are exactly $\frac{p-1}{2}$ non-zero pairs $[b],[-b]$ such that $[b][-b] \in f\left(\mathbb{Z}_{p}\right)$ and $[0][0] \in f\left(\mathbb{Z}_{p}\right)$. Therefore, $|f(\mathbb{Z})|=\frac{p-1}{2}+1=\frac{p+1}{2}$.

