MTH 310: HW 5

Instructor: Matthew Cha

Due: June 18, 2018

- 1. Find all irreducible polynomials of degree 5 in $\mathbb{Z}_2[x]$. (*Hint*: There are six of them.)
- 2. (Hungerford 4.3.21) Find a non-constant polynomial in $\mathbb{Z}_9[x]$ that is a unit.
- 3. (Hungerford 4.4.4) For what value of k is x + 1 a factor of $x^4 + 2x^3 3x^2 + kx + 1$ in $\mathbb{Z}_5[x]$.
- 4. (Hungerford 4.4.19) We say that $a \in F$ is a multiple root of $f(x) \in F[x]$ if $(x a)^k$ is a factor of f(x) for some $k \ge 2$. Prove that $a \in \mathbb{R}$ is a multiple root of $f(x) \in \mathbb{R}[x]$ if and only if a is a root of both f(x) and f'(x), where f'(x) is the derivative of f(x). You may use standard properties of the derivative like the product rule.
- 5. The Factor Theorem as proved in class has many corollaries to it. Read through Corollary 4.17, 4.18, 4.19, and 4.20 in the text and summarize the results.
- 6. Rational Root Test: Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ where $a_i \in \mathbb{Z}$ for each *i*. Let $r, s \in \mathbb{Z}$ with $r \neq 0$ and the gcd of (r, s) = 1. Show that if $\frac{r}{s}$ is a root, that is, $f(\frac{r}{s}) = 0$ then $r|a_0$ and $s|a_n$. [*Hint:* See Theorem 4.21 in Hungerford.]
- 7. (Hungerford 5.1.6) Let $a \in F$ and $f(x) \in F[x]$.
 - (a) Show that $f(x) \equiv f(a) \mod (x-a)$.
 - (b) Use (a) to show that $x^3 + 2 \equiv x^4 + 2x^2 + 1 \mod (x-2)$ in \mathbb{Z}_5 .

This problem shows that the congruence class of f(x) modulo x - a is determined only by the value of the polynomial when evaluated at a.

- 8. (Hungerford 5.1.12) Let $f(x), p(x) \in F[x]$. If f(x) is relatively prime to p(x), prove that there is a $g(x) \in F[x]$ such that $f(x)g(x) \equiv 1_F \mod p(x)$.
- 9. Write out the addition and multiplication tables for the ring $\mathbb{Z}_2[x]/(x^2+x)$. Is $\mathbb{Z}_2[x]/(x^2+x)$ a field?
- 10. In $\mathbb{Z}_2[x]/(x^3+x+1)$, find the multiplicative inverse of [x+1].
- 11. (EC-worth .5% of final grade) Let p > 2 be prime and consider the function $f : \mathbb{Z}_p \to \mathbb{Z}_p$ defined by $f(x) = x^2$. Let $f(\mathbb{Z}_p)$ denote the image of f and find the cardinality $|f(\mathbb{Z}_p)|$. [*Hint*: $a \in f(\mathbb{Z}_p)$ if and only if the polynomial $x^2 - a$ is reducible in $\mathbb{Z}_p[x]$.]