MTH 310: HW 4

Instructor: Matthew Cha

Due: June 11, 2018

1. (Hungerford 4.1.3) List all the polynomials of degree 3 in $\mathbb{Z}_{2}[x]$.

Solution. A polynomial of degree 3 has the form $a x^{3}+b x^{2}+c x+d$ for $a, b, c, d \in \mathbb{Z}_{2}$ and $a \neq[0]_{2}$. Therefore, $a=[1]$ and there are $2^{3}=8$ total degree 3 polynomials. They are

$$
x^{3}, x^{3}+x^{2}, x^{3}+x, x^{3}+1, x^{3}+x^{2}+x, x^{3}+x^{2}+1, x^{3}+x+1, x^{3}+x^{2}+x+1
$$

2. (Hungerford 4.1.11) Show that $1+3 x$ is a unit in $\mathbb{Z}_{9}[x]$.

Solution. Notice that $3 \cdot 6=9 \cdot 2$ so that $[3][6]=[0]$ in \mathbb{Z}_{9}. In otherwords, [3] is a zero-divisor in \mathbb{Z}_{9}. It follows that

$$
(3 x+1)(6 x+1)=18 x+9 x+1=1 \quad \text { in } \quad \mathbb{Z}_{9}
$$

Thus, $3 x+1$ is a unit and its inverse is $(3 x+1)^{-1}=6 x+1$.
3. (Hungerford 4.1.16) Let R be a commutative ring with identity and $a \in R$. If $1_{R}+a x$ is a unit in $R[x]$, show that $a^{n}=0_{R}$ for some integer $n>0$.

Solution. Suppose that $1_{R}+a x$ is a unit in $R[x]$. Write its inverse as

$$
\left(1_{R}+a x\right)^{-1}=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

and assume WLOG that $a_{n} \neq 0_{R}$. Multiplication gives

$$
\begin{aligned}
1_{R} & =\left(1_{R}+a x\right)\left(1_{R}+a x\right)^{-1} \\
& =\left(1_{R}+a x\right)\left(a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}\right) \\
& =a a_{n} x^{n+1}+\left(a a_{n-1}+a_{n}\right) x^{n-1}+\cdots+\left(a a_{0}+a_{1}\right) x+a_{0} .
\end{aligned}
$$

Equating coefficients we have that

$$
\begin{aligned}
& 1_{R}=a_{0} \\
& 0_{R}=a a_{i}+a_{i+1} \quad \text { for } \quad 0 \leq i \leq n-1 \\
& 0_{R}=a a_{n} .
\end{aligned}
$$

The above recursion relation is solve by $a_{i}=(-a)^{i}$ for $0 \leq i \leq n$. The last relation gives,

$$
0_{R}=a a_{n}=a(-a)^{n}=(-1)^{n} a^{n+1}
$$

Since $(-1)^{n}$ is a unit in R we can apply cancellation. Therefore, $a^{n+1}=0_{R}$.
4. (Hungerford 4.1.20) Let $D: \mathbb{R}[x] \rightarrow \mathbb{R}[x]$ be the derivative map defined by

$$
D\left(a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}\right)=a_{1}+2 a_{2} x+\cdots+n a_{n} x^{n-1}
$$

Prove that D is not a homomorphism of rings.
Solution. Recall that $D(x)=1$. Notice that by the product rule

$$
D(x \cdot x)=x \cdot 1+1 \cdot x=2 x
$$

It follows that $2 x=D(x \cdot x) \neq D(x) D(x)=1$. Thus, D is not a ring homomorphism.
5. (Hungerford 4.2.4) Let F be a field and $f(x), g(x) \in F[x]$. If $f(x) \mid g(x)$ and $g(x) \mid f(x)$ show that $f(x)=c g(x)$ for some nonzero $c \in F$.

Solution. Since $f(x)$ and $g(x)$ are both divisors they are non-zero and have a non-negative degree.
Let $p(x)$ and $q(x)$ be such that $f(x)=g(x) p(x)$ and $g(x)=f(x) q(x)$. Applying the degree formula to both we have

$$
\begin{aligned}
& \operatorname{deg} f(x)=\operatorname{deg} g(x)+\operatorname{deg} p(x) \\
& \operatorname{deg} g(x)=\operatorname{deg} f(x)+\operatorname{deg} q(x)
\end{aligned}
$$

Thus, $0=\operatorname{deg} q(x)+\operatorname{deg} p(x)$. Since degree is non-negative we must have that $\operatorname{deg} q(x)=\operatorname{deg} p(x)=0$ and thus $p(x)=c \in F$. It follows that $f(x)=c g(x)$.
6. (Hungerford 4.2.5)
(a) Let $f(x)=x^{4}+3 x^{3}+2 x+4$ and $g(x)=x^{2}-1$ in $\mathbb{Z}_{5}[x]$. Show that $g(x) \mid f(x)$.
(b) Let $f(x)=x^{4}+x+1$ and $g(x)=x^{2}+x+1$ in $\mathbb{Z}_{2}[x]$. Adapt the Euclidean Algorithm for integers to find the gcd of $(f(x), g(x))$.

Solution.

(a) We can do long division and find that $x^{4}+3 x^{3}+2 x+4=\left(x^{2}-1\right)\left(x^{2}+3 x+1\right)$

$$
\begin{array}{r}
x ^ { 2 } - 1 \longdiv { x ^ { 2 } + 3 x + 1 } \\
\frac{x^{4}+3 x^{3}+0 x^{3}-2 x+4}{3 x^{3}+x^{2}}+2 x+4 \\
\frac{3 x^{3}+0 x^{2}-3 x}{x^{2}+0 x+4} \\
\frac{x^{2}+0 x-1}{0}
\end{array}
$$

Thus, $g(x) \mid f(x)$.
(b) We can do long division and find that $x^{4}+x+1=\left(x^{2}+x+1\right)\left(x^{2}+x\right)+1$.

$$
\begin{array}{r}
x^{2}+x+1 \frac{x^{2}+x}{x^{4}+0 x^{3}+0 x^{2}+x+1} \\
\frac{x^{4}+x^{3}+x^{2}}{x^{3}+x^{2}+x+1} \\
\frac{x^{3}+x^{2}+x}{1}
\end{array}
$$

Since $1=\left(x^{4}+x+1\right)-\left(x^{2}+x+1\right)\left(x^{2}+x\right)$ is the smallest degree monic polynomial linear combination of $f(x)$ and $g(x)$ we conclude that $(f(x), g(x))=1$.
7. (Hungerford 4.2.15) Let F be a field and $f(x), g(x), h(x) \in F[x]$. Prove that if $h(x) \mid f(x)$ and gcd of $(f(x), g(x))=1$ then gcd of $(h(x), g(x))=1$.

Solution. Let $p(x), u(x), v(x) \in F[x]$ be such that $h(x) p(x)=f(x)$ and $1=f(x) u(x)+g(x) v(x)$. By substitution, we have that $1=h(x) p(x) u(x)+g(x) v(x)$. Since 1 is the smallest degree monic polynomial linear combination of $h(x)$ and $g(x)$ we conclude that $(h(x), p(x))=1$.
8. (EC-worth $\mathbf{. 5 \%}$ of final grade) Let R be a commutative ring and let $f(x), g(x) \in R[x]$ with $f(x)$ nonzero. Prove that if $f(x) g(x)=0_{R}$ then there exists $c \in R$ such that $c g(x)=0_{R}$.
[Hint: Let a be the leading coefficient of f. Show that there exist n such that $a^{n} g(x)=0$.]

