
MTH 310: HW 4

Instructor: Matthew Cha

Due: June 11, 2018

1. (Hungerford 4.1.3) List all the polynomials of degree 3 in Z2[x].

Solution. A polynomial of degree 3 has the form ax3 + bx2 + cx + d for a, b, c, d ∈ Z2 and a 6= [0]2.
Therefore, a = [1] and there are 23 = 8 total degree 3 polynomials. They are

x3, x3 + x2, x3 + x, x3 + 1, x3 + x2 + x, x3 + x2 + 1, x3 + x + 1, x3 + x2 + x + 1.

2. (Hungerford 4.1.11) Show that 1 + 3x is a unit in Z9[x].

Solution. Notice that 3 · 6 = 9 · 2 so that [3][6] = [0] in Z9. In otherwords, [3] is a zero-divisor in Z9.
It follows that

(3x + 1)(6x + 1) = 18x + 9x + 1 = 1 in Z9.

Thus, 3x + 1 is a unit and its inverse is (3x + 1)−1 = 6x + 1.

3. (Hungerford 4.1.16) Let R be a commutative ring with identity and a ∈ R. If 1R + ax is a unit in
R[x], show that an = 0R for some integer n > 0.

Solution. Suppose that 1R + ax is a unit in R[x]. Write its inverse as

(1R + ax)−1 = anx
n + an−1x

n−1 + · · ·+ a1x + a0

and assume WLOG that an 6= 0R. Multiplication gives

1R = (1R + ax)(1R + ax)−1

= (1R + ax)(anx
n + an−1x

n−1 + · · ·+ a1x + a0)

= aanx
n+1 + (aan−1 + an)xn−1 + · · ·+ (aa0 + a1)x + a0.

Equating coefficients we have that

1R = a0

0R = aai + ai+1 for 0 ≤ i ≤ n− 1

0R = aan.

The above recursion relation is solve by ai = (−a)i for 0 ≤ i ≤ n. The last relation gives,

0R = aan = a(−a)n = (−1)nan+1.

Since (−1)n is a unit in R we can apply cancellation. Therefore, an+1 = 0R.

4. (Hungerford 4.1.20) Let D : R[x]→ R[x] be the derivative map defined by

D(a0 + a1x + a2x
2 + · · ·+ anx

n) = a1 + 2a2x + · · ·+ nanx
n−1.

Prove that D is not a homomorphism of rings.

Solution. Recall that D(x) = 1. Notice that by the product rule

D(x · x) = x · 1 + 1 · x = 2x.

It follows that 2x = D(x · x) 6= D(x)D(x) = 1. Thus, D is not a ring homomorphism.
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5. (Hungerford 4.2.4) Let F be a field and f(x), g(x) ∈ F [x]. If f(x)|g(x) and g(x)|f(x) show that
f(x) = cg(x) for some nonzero c ∈ F .

Solution. Since f(x) and g(x) are both divisors they are non-zero and have a non-negative degree.

Let p(x) and q(x) be such that f(x) = g(x)p(x) and g(x) = f(x)q(x). Applying the degree formula to
both we have

deg f(x) = deg g(x) + deg p(x)

deg g(x) = deg f(x) + deg q(x).

Thus, 0 = deg q(x) + deg p(x). Since degree is non-negative we must have that deg q(x) = deg p(x) = 0
and thus p(x) = c ∈ F . It follows that f(x) = cg(x).

6. (Hungerford 4.2.5)

(a) Let f(x) = x4 + 3x3 + 2x + 4 and g(x) = x2 − 1 in Z5[x]. Show that g(x)|f(x).

(b) Let f(x) = x4 +x+ 1 and g(x) = x2 +x+ 1 in Z2[x]. Adapt the Euclidean Algorithm for integers
to find the gcd of (f(x), g(x)).

Solution.

(a) We can do long division and find that x4 + 3x3 + 2x + 4 = (x2 − 1)(x2 + 3x + 1)

x2 − 1))x4 + 3x3 + 0x2 + 2x + 4
x2 + 3x + 1

123456789012345678900
12345678901x2 + 0x− 1
12345678901x2 + 0x + 4
123453x3 + 0x2 − 3x
123453x3 + x2 + 2x + 4
x4 + 0x3 − x2

Thus, g(x)|f(x).

(b) We can do long division and find that x4 + x + 1 = (x2 + x + 1)(x2 + x) + 1.

x2 + x + 1))x4 + 0x3 + 0x2 + x + 1
x2 + x1234

12345678901234567891
12345x3 + x2 + x
12345x3 + x2 + x + 1
1x4 + x3 + x2

Since 1 = (x4 + x + 1) − (x2 + x + 1)(x2 + x) is the smallest degree monic polynomial linear
combination of f(x) and g(x) we conclude that (f(x), g(x)) = 1.

7. (Hungerford 4.2.15) Let F be a field and f(x), g(x), h(x) ∈ F [x]. Prove that if h(x)|f(x) and gcd
of (f(x), g(x)) = 1 then gcd of (h(x), g(x)) = 1.

Solution. Let p(x), u(x), v(x) ∈ F [x] be such that h(x)p(x) = f(x) and 1 = f(x)u(x) + g(x)v(x).
By substitution, we have that 1 = h(x)p(x)u(x) + g(x)v(x). Since 1 is the smallest degree monic
polynomial linear combination of h(x) and g(x) we conclude that (h(x), p(x)) = 1.

8. (EC–worth .5% of final grade) Let R be a commutative ring and let f(x), g(x) ∈ R[x] with f(x)
nonzero. Prove that if f(x)g(x) = 0R then there exists c ∈ R such that cg(x) = 0R.

[Hint : Let a be the leading coefficient of f . Show that there exist n such that ang(x) = 0.]
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