MTH 310: HW 4

Instructor: Matthew Cha

Due: June 11, 2018

- 1. (Hungerford 4.1.3) List all the polynomials of degree 3 in $\mathbb{Z}_2[x]$.
- 2. (Hungerford 4.1.11) Show that 1 + 3x is a unit in $\mathbb{Z}_9[x]$.
- 3. (Hungerford 4.1.16) Let R be a commutative ring with identity and $a \in R$. If $1_R + ax$ is a unit in R[x], show that $a^n = 0_R$ for some integer n > 0.
- 4. (Hungerford 4.1.20) Let $D : \mathbb{R}[x] \to \mathbb{R}[x]$ be the derivative map defined by

$$D(a_0 + a_1x + a_2x^2 + \dots + a_nx^n) = a_1 + 2a_2x + \dots + na_nx^{n-1}.$$

Prove that D is not a homomorphism of rings.

- 5. (Hungerford 4.2.4) Let F be a field and $f(x), g(x) \in F[x]$. If f(x)|g(x) and g(x)|f(x) show that f(x) = cg(x) for some nonzero $c \in F$.
- 6. (Hungerford 4.2.5)
 - (a) Let $f(x) = x^4 + 3x^3 + 2x + 4$ and $g(x) = x^2 1$ in $\mathbb{Z}_5[x]$. Show that g(x)|f(x).
 - (b) Let $f(x) = x^4 + x + 1$ and $g(x) = x^2 + x + 1$ in $\mathbb{Z}_2[x]$. Adapt the Euclidean Algorithm for integers to find the gcd of (f(x), g(x)).
- 7. (Hungerford 4.2.15) Let F be a field and $f(x), g(x), h(x) \in F[x]$. Prove that if h(x)|f(x) and gcd of (f(x), g(x)) = 1 then gcd of (h(x), g(x)) = 1.
- 8. (EC-worth .5% of final grade) Let R be a commutative ring and let $f(x), g(x) \in R[x]$ with f(x) nonzero. Prove that if $f(x)g(x) = 0_R$ then there exists $c \in R$ such that $cg(x) = 0_R$.