MTH 310: HW 4

Instructor: Matthew Cha
Due: June 11, 2018

1. (Hungerford 4.1.3) List all the polynomials of degree 3 in $\mathbb{Z}_{2}[x]$.
2. (Hungerford 4.1.11) Show that $1+3 x$ is a unit in $\mathbb{Z}_{9}[x]$.
3. (Hungerford 4.1.16) Let R be a commutative ring with identity and $a \in R$. If $1_{R}+a x$ is a unit in $R[x]$, show that $a^{n}=0_{R}$ for some integer $n>0$.
4. (Hungerford 4.1.20) Let $D: \mathbb{R}[x] \rightarrow \mathbb{R}[x]$ be the derivative map defined by

$$
D\left(a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}\right)=a_{1}+2 a_{2} x+\cdots+n a_{n} x^{n-1} .
$$

Prove that D is not a homomorphism of rings.
5. (Hungerford 4.2.4) Let F be a field and $f(x), g(x) \in F[x]$. If $f(x) \mid g(x)$ and $g(x) \mid f(x)$ show that $f(x)=c g(x)$ for some nonzero $c \in F$.
6. (Hungerford 4.2.5)
(a) Let $f(x)=x^{4}+3 x^{3}+2 x+4$ and $g(x)=x^{2}-1$ in $\mathbb{Z}_{5}[x]$. Show that $g(x) \mid f(x)$.
(b) Let $f(x)=x^{4}+x+1$ and $g(x)=x^{2}+x+1$ in $\mathbb{Z}_{2}[x]$. Adapt the Euclidean Algorithm for integers to find the gcd of $(f(x), g(x))$.
7. (Hungerford 4.2.15) Let F be a field and $f(x), g(x), h(x) \in F[x]$. Prove that if $h(x) \mid f(x)$ and gcd of $(f(x), g(x))=1$ then gcd of $(h(x), g(x))=1$.
8. (EC-worth $\mathbf{. 5 \%}$ of final grade) Let R be a commutative ring and let $f(x), g(x) \in R[x]$ with $f(x)$ nonzero. Prove that if $f(x) g(x)=0_{R}$ then there exists $c \in R$ such that $c g(x)=0_{R}$.

