MTH 310: HW 3

Instructor: Matthew Cha

Due: May 30, 2018

(Hungerford 3.1.6 b) Let k be a fixed integer. Show that the set of multiples of k is a subring of Z.
 Solution. Let kZ = {kn : n ∈ Z} denote the set of multiples of k.
 Let a, b ∈ ∈ kZ. Then, a = km and b = kn for some m, n ∈ Z. We have that

$a+b=km+kn=k(m+n)\in k\mathbb{Z}$	(closure of $+)$
$ab = (km)(kn) = k(kmn) \in k\mathbb{Z}$	$($ closure of $\cdot)$

By properties of 0, we have that $0 = k0 \in k\mathbb{Z}$. Let $a \in k\mathbb{Z}$ and write a = km. Then, $-a = -km = k(-m) \in k\mathbb{Z}$. Therefore, applying the subring theorem we have shown that $k\mathbb{Z}$ is a subring of \mathbb{Z} .

- 2. (Hungerford 3.1.11 and 41) Let $S \subset M_2(\mathbb{R})$ be the set of matrices of the form $\begin{pmatrix} a & a \\ b & b \end{pmatrix}$.
 - (a) Prove that S is a ring.
 - (b) Show that $J = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$ is a *right identity* (that is, AJ = A for all $A \in S$). Show that J is not a left identity by finding a matrix $B \in S$ such that $JB \neq B$.
 - (c) Prove that the matrix $\begin{pmatrix} x & x \\ y & y \end{pmatrix}$ is a right identity in S if and only if x + y = 1.

Solution.

(a) Recall that $M_2(\mathbb{R})$ with standard matrix addition and multiplication is a ring. We will show that $S \subset M_2(\mathbb{R})$ is a subring, and thus is itself a ring.

Let $M, N \in S$ and write $M = \begin{pmatrix} a & a \\ b & b \end{pmatrix}$ and $N = \begin{pmatrix} c & c \\ d & d \end{pmatrix}$ for some $a, b, c, d \in \mathbb{R}$. It follows that

$$M + N = \begin{pmatrix} a & a \\ b & b \end{pmatrix} + \begin{pmatrix} c & c \\ d & d \end{pmatrix}$$
$$= \begin{pmatrix} a + c & a + c \\ b + d & b + d \end{pmatrix} \in S \qquad \text{(closure of +)}$$
$$MN = \begin{pmatrix} a & a \\ b & b \end{pmatrix} \begin{pmatrix} c & c \\ d & d \end{pmatrix}$$
$$= \begin{pmatrix} ac + ad & ac + ad \\ bc + bd & bc + bd \end{pmatrix} \in S \qquad \text{(closure of +)}$$

Let a = 0 and b = 0, then $0 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \in S$.

Let $M \in S$ and write $M = \begin{pmatrix} a & a \\ b & b \end{pmatrix}$. Then,

$$\left(\begin{array}{cc}a&a\\b&b\end{array}\right)+\left(\begin{array}{cc}-a&-a\\-b&-b\end{array}\right)=0,$$

so that $-M = \begin{pmatrix} -a & -a \\ -b & -b \end{pmatrix} \in S.$

Therefore, by the subring theorem S is a subring of $M_2(\mathbb{R})$ and furthermore, is a ring on its own. (b) Let $M = \begin{pmatrix} a & a \\ b & b \end{pmatrix}$. It follows that

$$\left(\begin{array}{cc}a&a\\b&b\end{array}\right)\left(\begin{array}{cc}1&1\\0&0\end{array}\right)=\left(\begin{array}{cc}a\cdot 1+a\cdot 0&a\cdot 1+a\cdot 0\\b\cdot 1+b\cdot 0&b\cdot 1+b\cdot 0\end{array}\right)=\left(\begin{array}{cc}a&a\\b&b\end{array}\right),$$

so that J is a right identity. However,

$$\left(\begin{array}{rrr}1&1\\0&0\end{array}\right)\left(\begin{array}{rrr}0&1\\1&0\end{array}\right)=\left(\begin{array}{rrr}1&1\\0&0\end{array}\right)$$

so J is not a left identity.

(c)
$$(\Longrightarrow)$$
 Suppose $\begin{pmatrix} x & x \\ y & y \end{pmatrix}$ is a right identity. Then, for all $M = \begin{pmatrix} a & a \\ b & b \end{pmatrix} \in S$ we have that $\begin{pmatrix} a & a \\ b & b \end{pmatrix} \begin{pmatrix} x & x \\ y & y \end{pmatrix} = \begin{pmatrix} a & a \\ b & b \end{pmatrix}$.

Multiplying the left hand side we get,

$$\left(\begin{array}{cc} ax + ay & ax + ay \\ bx + by & bx + by \end{array}\right) = \left(\begin{array}{cc} a & a \\ b & b \end{array}\right).$$

Equating the entries of the matrices leaves the equations ax + ay = a and bx + by = b. By cancellation, a(x + y) = a implies that x + y = 1.

(\Leftarrow) Suppose x + y = 1. By matrix multiplication, it follows that

$$MJ = \begin{pmatrix} a & a \\ b & b \end{pmatrix} \begin{pmatrix} x & x \\ y & y \end{pmatrix} = \begin{pmatrix} ax + ay & ax + ay \\ bx + by & bx + by \end{pmatrix} = \begin{pmatrix} a(x+y) & a(x+y) \\ b(x+y) & b(x+y) \end{pmatrix} = \begin{pmatrix} a & a \\ b & b \end{pmatrix}.$$

Therefore, J is a right identity.

3. (Hungerford 3.1.21) Show that the subset $R := \{[0], [2], [4], [6], [8]\} \subset \mathbb{Z}_{10}$ is a subring of \mathbb{Z}_{10} and that R is a ring with identity.

Solution. Notice that $[a] \in R$ if and only if a when divided by 10 leaves an even remainder.

Let $[a], [b] \in \mathbb{R}$, and write a = 10k + 2j and b = 10k' + 2j' for some j = 0, 1, 2, 3, 4. By the Division Algorithm, there exist unique $q, r \in \mathbb{Z}$ such that a + b = 10q + r with $0 \le r < 10$. By substitution, we see that a + b = 10(k + k') + 2(j + j') = 10q + r. Therefore, r = 10(k + k' - q) + 2(j + j') = 2(5(k + k' - q) + (j + j')) which implies that 2|r. We conclude that $[a] + [b] \in \mathbb{R}$ (closure of +).

Similarly, we can write ab = 10q + r with $0 \le r < 10$. By substitution it follows that ab = (10k + 2j)(10k' + 2j') = 10q + r. Solving for r we see that 2|r. We conclude that $[a][b] \in R$ (closure of \cdot). By definition $[0] \in R$.

Let $[a] \in R$ and write a = 10k + 2j where $0 \le 2j \le 8$. Then, -a = -10k - 2j = -10(k+1) + 2(5-j) and $0 \le 2(5-j) \le 8$, which shows that -a has an even remainder. Therefore, $[-a] \in R$.

By the subring theorem, R is a subring of \mathbb{Z}_{10} .

Notice that

[6][2] = [12] = [2]
[6][4] = [24] = [4]
[6][6] = [36] = [6]
[6][8] = [48] = [8].

Thus, [6] is an identity for R.

4. (Hungerford 3.1.26) Let $L = \{a \in \mathbb{R} : a > 0\}$. Define a new addition and multiplication on L by

$$a \oplus b = ab$$
 and $a \otimes b = a^{\ln b}$.

Prove that L is a commutative ring with identity. (Note there was a mistake in the original problem that is corrected here)

Solution. First, we show that (L, \oplus, \otimes) is a ring. We freely use the properties of normal + and \cdot on \mathbb{R} . Let $a, b, c \in L$

- (a) (closure for \oplus) If a > 0 and b > 0 then ab > 0. Thus, $a \oplus b = ab > 0$ and $a \oplus b \in L$.
- (b) (associative \oplus) $(a \oplus b) \oplus b = (ab) \oplus c = (ab)c = abc$ and $a \oplus (b \oplus c) = a \oplus (bc) = a(bc) = abc$. Therefore $(a \oplus b) \oplus c = a \oplus (b \oplus c)$.
- (c) (commutative \oplus) $a \oplus b = ab = ba = b \oplus a$.
- (d) (zero) $1 \in L$ and $a \oplus 1 = a = 1 = a = 1 \oplus a$. Therefore, $1 = 0_L$ is the zero element.
- (e) (inverse \oplus) Let $a \in L$. Then, a > 0 so that 1/a > 0 and $1/a \in L$. Thus, $a \oplus (1/a) = a(1/a) = 1 = 0_L$ and similarly, $(1/a) \oplus a = (1/a)(a) = 1 = 0_L$. Therefore, -a = (1/a) in L.
- (f) (closure for \otimes) If a > 0 and b > 0 then $a^{\ln b} > 0$. Thus, $a \otimes b = a^{\ln b} \in L$.
- (g) (associative \otimes) $(a \otimes b) \otimes c = (a^{\ln b}) \otimes c = (a^{\ln b})^{\ln c} = a^{\ln b \ln c}$ and $a \otimes (b \otimes c) = a \otimes (b^{\ln c}) = a^{\ln(b^{\ln c})} = a^{\ln c \ln b}$, where we use the basic identity of $\ln that \ln(a^b) = b \ln a$. Therefore, $(a \otimes b) \otimes c = a \otimes (b \otimes c)$.
- (h) (distribution) $a \otimes (b \oplus c) = a \otimes (bc) = a^{\ln(bc)} = a^{\ln b + \ln c}$ and $(a \otimes b) \oplus (a \otimes c) = a^{\ln b} \oplus a^{\ln c} = a^{\ln b} a^{\ln c} = a^{\ln b + \ln c}$, where use used the basic property of $\ln \tanh \ln(ab) = \ln a + \ln b$. Therefore, $a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c)$.

Let $e \in L$ be the unique base of the natural log, that is, $e^{\ln a} = a$ and $\ln e = 1$. It follows that $a \otimes e = a^{\ln e} = a^1 = a$ and $e \otimes a = e^{\ln a} = a$ Therefore, L is a ring with identity $1_L = e$.

Let $a, b \in L$. We have $a \otimes b = a^{\ln b} = e^{\ln(a^{\ln b})} = e^{\ln b \ln a}$ and $b \otimes a = b^{\ln a} = e^{\ln(b^{\ln a})} = e^{\ln a \ln b}$. Therefore, $a \otimes b = b \otimes a$ and L is a commutative ring.

5. (Hungerford 3.2.8) Let R be a ring and $b \in R$ be fixed and define $T := \{rb : r \in R\}$. Prove that $T \subset R$ is a subring.

Solution. Let $x, y \in T$ and write $x = r_1 b$ and $y = r_2 b$ for some $r_1, r_2 \in R$. Then, $x + y = r_1 b + r_2 b = (r_1 + r_2)b$ where $r_1 + r_2 \in R$. Thus, $x + y \in T$ (closure of +). Further, $x \cdot y = (r_1 b)(r_2 b) = (r_1 b r_2)b$ where $r_1 b r_2 \in R$. Thus, $x \cdot y \in T$ (closure of ·).

We have that $b \cdot 0_R = 0_R$. Thus, $0_R \in T$.

From basic ring properties, $-x = -r_1b = (-r_1)b$ where $-r_1 \in R$. Thus, $-x \in T$.

Therefore, by the subring theorem T is a subring of R.

6. (Hungerford 3.2.25) Let $S \subset R$ be a subring and suppose R is an integral domain. Prove that if S is an integral domain then the identities are equal $1_S = 1_R$. (Note there was a mistake in the original problem that is corrected here.)

Solution. Since S is an integral domain, S is a ring with identity call it 1_S . Let $s \in S$ be nonzero. It follows that

$$0_R = s - s$$
$$= s1_R - s1_S$$
$$= s(1_R - 1_S)$$

Since R is an integral domain and $s \in S \subset R$ is nonzero, we conclude that $1_R - 1_S = 0_R$. Therefore, $1_S = -(-1_R) = 1_R$.

7. (Hungerford 3.2.31) A Boolean ring is a ring R with identity in which $x^2 = x$ for every $x \in R$. If R is a Boolean ring prove that R is commutative. [Hint: Expand $(a + b)^2$.]

Solution. Let $a, b \in R$. Then since R is a Boolean ring we have that $(a + b)^2 = a + b$ Following the hint, expand the product

$$(a + b)^2 = a^2 + ab + ba + b^2 = a + ab + ba + ba$$

By substitution, a + b = a + ab + ba + b. By subtraction, $0_R = ab + ba$ and further, ab = -ba.

Apply the above the case $a = b = 1_R$ we have that $1_R 1_R = -1_R 1_R$ or simply $1_R = -1_R$.

Therefore, $ab = -ba = (-1_R)ba = (1_R)ba = ba$. We conclude that R is commutative.

8. (Hungerford 3.3.9) If $f : \mathbb{Z} \to \mathbb{Z}$ is an isomorphism, prove that f is the identity map. [*Hint*: What is $f(1), f(1+1), \ldots$?]

Solution. Let $f : \mathbb{Z} \to \mathbb{Z}$ be an isomorphism. Since \mathbb{Z} is a ring with identity 1, basic ring homomorphism properties of Theorem 3.10 imply that f(0) = 0, f(1) = 1 and f(-1) = -1.

Let $k \in \mathbb{Z}$ and k > 0. We can write $k = 1 + 1 + \dots + 1$ adding 1 k times. Since f respects addition we have that

$$f(k) = f(1+1+\dots+1) = f(1) + f(1) + \dots + f(1) = 1 + 1 \dots + 1 = k.$$

Thus, if k > 0 then f(k) = k.

If k < 0 then -k > 0. Since f respects multiplication we have that f(-k) = f(-1)f(k) = (-1)(k) = -k.

We conclude f(k) = k for all \mathbb{Z} and thus f is the identity map.

9. (Hungerford 3.3. 27 and 29) If $g : R \to S$ and $f : S \to T$ are homomorphisms, show that $f \circ g : R \to T$ is a homomorphism. If f and g are isomorphisms, show that $f \circ g$ is an isomorphism.

Solution. Let $a, b \in R$. We have that

$$\begin{aligned} f \circ g(a+b) &= f(g(a+b)) \\ &= f(g(a) + g(b)) & (g \text{ respects } +) \\ &= f(g(a)) + f(g(b)) & (f \text{ respects } +) \\ &= f \circ g(a) + f \circ g(b) \end{aligned}$$

and similarly,

$$f \circ g(a \cdot b) = f(g(ab))$$

= $f(g(a)g(b))$ (g respects ·)
= $f(g(a))f(g(b))$ (f respects ·)
= $(f \circ g(a))(f \circ g(b)).$

Thus, $f \circ g$ is a homomorphism of rings.

Further, suppose f and g are isomorphisms. Then, f and g are both injective and surjective.

Suppose that $f \circ g(a) = f \circ g(b)$ which we write as f(g(a)) = f(g(b)). Then, since f is injective we have that g(a) = g(b). Since g is injective a = b. Thus, $f \circ g$ is injective

Let $t \in T$. Since f is surjective there exists $s \in S$ such that f(s) = t. Since g is surjective there exists $r \in R$ such that g(r) = s. By substitution, we have that $f \circ g(r) = f(g(r)) = t$. Thus, $f \circ g$ is surjective.

We have shown that $f \circ g$ is bijective. Since we have already shown that $f \circ g$ is a homomorphism, we conclude that $f \circ g$ is an isomorphism.

- 10. (Hungerford 3.3.41) Let $m, n \in \mathbb{Z}$ be positive with gcd (m, n) = 1 and define the map $f : \mathbb{Z}_{mn} \to \mathbb{Z}_m \times \mathbb{Z}_n$ by $f([a]_{mn}) = ([a]_m, [a]_n)$.
 - (a) Show that f is well-defined, that is, if $[a]_{mn} = [b]_{mn}$ then $[a]_m = [b]_m$ and $[a]_n = [b]_n$.
 - (b) Prove that f is an isomorphism.

Solution.

- (a) Let $[a]_{mn}, [b]_{mn} \in \mathbb{Z}_{mn}$ and suppose that $[a]_{mn} = [b]_{mn}$. Congruence classes are equal if and only if their representatives are congruent, that is, $a \equiv b \mod mn$. Thus, a b = mnk for some k. Thus, a b = m(nk) which implies $[a]_m = [b]_m$ and a b = n(mk) which implies $[a]_n = [b]_n$.
- (b) First, let's show that f is a homomorphism. Let $[a]_{mn}, [b]_{mn} \in \mathbb{Z}_{mn}$. Then,

$$f([a]_{mn} + [b]_{mn}) = f([a + b]_{mn})$$

= $([a + b]_m, [a + b]_n)$
= $([a]_m + [b]_m, [a]_n + [b]_n)$
= $([a]_m, [a]_n) + ([b]_m, [b]_n)$
= $f([a]_{mn}) + f([b]_{mn})$

and

$$f([a]_{mn}[b]_{mn}) = f([ab]_{mn})$$

= ([ab]_m, [ab]_n)
= ([a]_m[b]_m, [a]_n[b]_n)
= ([a]_m, [a]_n)([b]_m, [b]_n)
= f([a]_{mn})f([b]_{mn}).

Therefore, f is a homomorphism for any m, n.

Next, we will use the fact that gcd of (m, n) = 1 to show that f is bijective. Suppose $f([a]_{mn}) = f([b]_{mn})$. Then, $([a]_m, [a]_n) = ([b]_m, [b]_n)$, and by equating entries,

```
[a]_m = [b]_m \implies a - b = mk for some k \in \mathbb{Z}
[a]_n = [a]_n \implies a - b = nj for some j \in \mathbb{Z}.
```

By substitution, mk = nj. Thus, m|nj and (m, n) = 1 from which we conclude that m|j. Write j = ml for some $l \in \mathbb{Z}$. Back substitution gives a - b = nj = nml which implies $[a]_{mn} = [b]_{mn}$. Thus, f is injective.

We know that the cardinality of the sets satisfies $|\mathbb{Z}_{mn}| = mn = |\mathbb{Z}_m \times \mathbb{Z}_n|$. Thus, f is an injective function from two finite sets of the same cardinality. We conclude that f must be bijective.