
MTH 310: HW 3

Instructor: Matthew Cha

Due: May 30, 2018

1. (Hungerford 3.1.6 b) Let k be a fixed integer. Show that the set of multiples of k is a subring of Z.

Solution. Let kZ = {kn : n ∈ Z} denote the set of multiples of k.

Let a, b ∈∈ kZ. Then, a = km and b = kn for some m,n ∈ Z. We have that

a + b = km + kn = k(m + n) ∈ kZ ( closure of +)

ab = (km)(kn) = k(kmn) ∈ kZ ( closure of ·)

By properties of 0, we have that 0 = k0 ∈ kZ.

Let a ∈ kZ and write a = km. Then, −a = −km = k(−m) ∈ kZ.

Therefore, applying the subring theorem we have shown that kZ is a subring of Z.

2. (Hungerford 3.1.11 and 41) Let S ⊂M2(R) be the set of matrices of the form

(
a a
b b

)
.

(a) Prove that S is a ring.

(b) Show that J =

(
1 1
0 0

)
is a right identity (that is, AJ = A for all A ∈ S). Show that J is not

a left identity by finding a matrix B ∈ S such that JB 6= B.

(c) Prove that the matrix

(
x x
y y

)
is a right identity in S if and only if x + y = 1.

Solution.

(a) Recall that M2(R) with standard matrix addition and multiplication is a ring. We will show that
S ⊂M2(R) is a subring, and thus is itself a ring.

Let M,N ∈ S and write M =

(
a a
b b

)
and N =

(
c c
d d

)
for some a, b, c, d ∈ R. It follows

that

M + N =

(
a a
b b

)
+

(
c c
d d

)
=

(
a + c a + c
b + d b + d

)
∈ S (closure of +)

MN =

(
a a
b b

)(
c c
d d

)
=

(
ac + ad ac + ad
bc + bd bc + bd

)
∈ S (closure of ·)

Let a = 0 and b = 0, then 0 =

(
0 0
0 0

)
∈ S.
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Let M ∈ S and write M =

(
a a
b b

)
. Then,

(
a a
b b

)
+

(
−a −a
−b −b

)
= 0,

so that −M =

(
−a −a
−b −b

)
∈ S.

Therefore, by the subring theorem S is a subring of M2(R) and furthermore, is a ring on its own.

(b) Let M =

(
a a
b b

)
. It follows that

(
a a
b b

)(
1 1
0 0

)
=

(
a · 1 + a · 0 a · 1 + a · 0
b · 1 + b · 0 b · 1 + b · 0

)
=

(
a a
b b

)
,

so that J is a right identity.

However, (
1 1
0 0

)(
0 1
1 0

)
=

(
1 1
0 0

)
so J is not a left identity.

(c) ( =⇒ ) Suppose

(
x x
y y

)
is a right identity. Then, for all M =

(
a a
b b

)
∈ S we have that

(
a a
b b

)(
x x
y y

)
=

(
a a
b b

)
.

Multiplying the left hand side we get,(
ax + ay ax + ay
bx + by bx + by

)
=

(
a a
b b

)
.

Equating the entries of the matrices leaves the equations ax + ay = a and bx + by = b. By
cancellation, a(x + y) = a implies that x + y = 1.

(⇐= ) Suppose x + y = 1. By matrix multiplication, it follows that

MJ =

(
a a
b b

)(
x x
y y

)
=

(
ax + ay ax + ay
bx + by bx + by

)
=

(
a(x + y) a(x + y)
b(x + y) b(x + y)

)
=

(
a a
b b

)
.

Therefore, J is a right identity.

3. (Hungerford 3.1.21) Show that the subset R := {[0], [2], [4], [6], [8]} ⊂ Z10 is a subring of Z10 and
that R is a ring with identity.

Solution. Notice that [a] ∈ R if and only if a when divided by 10 leaves an even remainder.

Let [a], [b] ∈ R, and write a = 10k + 2j and b = 10k′ + 2j′ for some j = 0, 1, 2, 3, 4. By the Division
Algorithm, there exist unique q, r ∈ Z such that a + b = 10q + r with 0 ≤ r < 10. By substitution,
we see that a + b = 10(k + k′) + 2(j + j′) = 10q + r. Therefore, r = 10(k + k′ − q) + 2(j + j′) =
2(5(k + k′ − q) + (j + j′)) which implies that 2|r. We conclude that [a] + [b] ∈ R (closure of +).

Similarly, we can write ab = 10q + r with 0 ≤ r < 10. By substitution it follows that ab = (10k +
2j)(10k′ + 2j′) = 10q + r. Solving for r we see that 2|r. We conclude that [a][b] ∈ R (closure of ·).
By definition [0] ∈ R.

Let [a] ∈ R and write a = 10k + 2j where 0 ≤ 2j ≤ 8. Then, −a = −10k− 2j = −10(k + 1) + 2(5− j)
and 0 ≤ 2(5− j) ≤ 8, which shows that −a has an even remainder. Therefore, [−a] ∈ R.

By the subring theorem, R is a subring of Z10.

2



Notice that

[6][2] = [12] = [2]

[6][4] = [24] = [4]

[6][6] = [36] = [6]

[6][8] = [48] = [8].

Thus, [6] is an identity for R.

4. (Hungerford 3.1.26) Let L = {a ∈ R : a > 0}. Define a new addition and multiplication on L by

a⊕ b = ab and a⊗ b = aln b.

Prove that L is a commutative ring with identity. (Note there was a mistake in the original problem
that is corrected here)

Solution. First, we show that (L,⊕,⊗) is a ring. We freely use the properties of normal + and · on
R. Let a, b, c ∈ L

(a) (closure for ⊕) If a > 0 and b > 0 then ab > 0. Thus, a⊕ b = ab > 0 and a⊕ b ∈ L.

(b) (associative ⊕) (a ⊕ b) ⊕ b = (ab) ⊕ c = (ab)c = abc and a ⊕ (b ⊕ c) = a ⊕ (bc) = a(bc) = abc.
Therefore (a⊕ b)⊕ c = a⊕ (b⊕ c).

(c) (commutative ⊕) a⊕ b = ab = ba = b⊕ a.

(d) (zero) 1 ∈ L and a⊕ 1 = a1 = a = 1a = 1⊕ a. Therefore, 1 = 0L is the zero element.

(e) (inverse ⊕) Let a ∈ L. Then, a > 0 so that 1/a > 0 and 1/a ∈ L. Thus, a ⊕ (1/a) = a(1/a) =
1 = 0L and similarly, (1/a)⊕ a = (1/a)(a) = 1 = 0L. Therefore, −a = (1/a) in L.

(f) (closure for ⊗) If a > 0 and b > 0 then aln b > 0. Thus, a⊗ b = aln b ∈ L.

(g) (associative ⊗) (a⊗b)⊗c = (aln b)⊗c = (aln b)ln c = aln b ln c and a⊗(b⊗c) = a⊗(bln c) = aln(b
ln c) =

aln c ln b, where we use the basic identity of ln that ln(ab) = b ln a. Therefore, (a⊗b)⊗c = a⊗(b⊗c).
(h) (distribution) a ⊗ (b ⊕ c) = a ⊗ (bc) = aln(bc) = aln b+ln c and (a ⊗ b) ⊕ (a ⊗ c) = aln b ⊕ aln c =

aln baln c = aln b+ln c, where use used the basic property of ln that ln(ab) = ln a + ln b. Therefore,
a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c).

Let e ∈ L be the unique base of the natural log, that is, eln a = a and ln e = 1. It follows that
a⊗ e = aln e = a1 = a and e⊗ a = eln a = a Therefore, L is a ring with identity 1L = e.

Let a, b ∈ L. We have a ⊗ b = aln b = eln(a
ln b) = eln b ln a and b ⊗ a = bln a = eln(b

ln a) = eln a ln b.
Therefore, a⊗ b = b⊗ a and L is a commutative ring.

5. (Hungerford 3.2.8) Let R be a ring and b ∈ R be fixed and define T := {rb : r ∈ R}. Prove that
T ⊂ R is a subring.

Solution. Let x, y ∈ T and write x = r1b and y = r2b for some r1, r2 ∈ R. Then, x + y = r1b + r2b =
(r1 + r2)b where r1 + r2 ∈ R. Thus, x + y ∈ T (closure of +). Further, x · y = (r1b)(r2b) = (r1br2)b
where r1br2 ∈ R. Thus, x · y ∈ T (closure of ·).
We have that b · 0R = 0R. Thus, 0R ∈ T .

From basic ring properties, −x = −r1b = (−r1)b where −r1 ∈ R. Thus, −x ∈ T .

Therefore, by the subring theorem T is a subring of R.

6. (Hungerford 3.2.25) Let S ⊂ R be a subring and suppose R is an integral domain. Prove that if S
is an integral domain then the identities are equal 1S = 1R. (Note there was a mistake in the original
problem that is corrected here.)
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Solution. Since S is an integral domain, S is a ring with identity call it 1S . Let s ∈ S be nonzero. It
follows that

0R = s− s

= s1R − s1S

= s(1R − 1S).

Since R is an integral domain and s ∈ S ⊂ R is nonzero, we conclude that 1R − 1S = 0R. Therefore,
1S = −(−1R) = 1R.

7. (Hungerford 3.2.31) A Boolean ring is a ring R with identity in which x2 = x for every x ∈ R. If
R is a Boolean ring prove that R is commutative. [Hint : Expand (a + b)2.]

Solution. Let a, b ∈ R. Then since R is a Boolean ring we have that (a + b)2 = a + b Following the
hint, expand the product

(a + b)2 = a2 + ab + ba + b2 = a + ab + ba + b.

By substitution, a + b = a + ab + ba + b. By subtraction, 0R = ab + ba and further, ab = −ba.

Apply the above the case a = b = 1R we have that 1R1R = −1R1R or simply 1R = −1R.

Therefore, ab = −ba = (−1R)ba = (1R)ba = ba. We conclude that R is commutative.

8. (Hungerford 3.3.9) If f : Z→ Z is an isomorphism, prove that f is the identity map. [Hint : What
is f(1), f(1 + 1), . . .?]

Solution. Let f : Z → Z be an isomorphism. Since Z is a ring with identity 1, basic ring homomor-
phism properties of Theorem 3.10 imply that f(0) = 0, f(1) = 1 and f(−1) = −1.

Let k ∈ Z and k > 0. We can write k = 1 + 1 + · · ·+ 1 adding 1 k times. Since f respects addition we
have that

f(k) = f(1 + 1 + · · ·+ 1) = f(1) + f(1) + · · ·+ f(1) = 1 + 1 · · ·+ 1 = k.

Thus, if k > 0 then f(k) = k.

If k < 0 then −k > 0. Since f respects multiplication we have that f(−k) = f(−1)f(k) = (−1)(k) =
−k.

We conclude f(k) = k for all Z and thus f is the identity map.

9. (Hungerford 3.3. 27 and 29) If g : R → S and f : S → T are homomorphisms, show that
f ◦ g : R→ T is a homomorphism. If f and g are isomorphisms, show that f ◦ g is an isomorphism.

Solution. Let a, b ∈ R. We have that

f ◦ g(a + b) = f(g(a + b))

= f(g(a) + g(b)) (g respects +)

= f(g(a)) + f(g(b)) (f respects +)

= f ◦ g(a) + f ◦ g(b)

and similarly,

f ◦ g(a · b) = f(g(ab))

= f(g(a)g(b)) (g respects ·)
= f(g(a))f(g(b)) (f respects ·)
= (f ◦ g(a))(f ◦ g(b)).

Thus, f ◦ g is a homomorphism of rings.

Further, suppose f and g are isomorphisms. Then, f and g are both injective and surjective.
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Suppose that f ◦ g(a) = f ◦ g(b) which we write as f(g(a)) = f(g(b)). Then, since f is injective we
have that g(a) = g(b). Since g is injective a = b. Thus, f ◦ g is injective

Let t ∈ T . Since f is surjective there exists s ∈ S such that f(s) = t. Since g is surjective there
exists r ∈ R such that g(r) = s. By substitution, we have that f ◦ g(r) = f(g(r)) = t. Thus, f ◦ g is
surjective.

We have shown that f ◦ g is bijective. Since we have already shown that f ◦ g is a homomorphism, we
conclude that f ◦ g is an isomorphism.

10. (Hungerford 3.3.41) Let m,n ∈ Z be positive with gcd (m,n) = 1 and define the map f : Zmn →
Zm × Zn by f([a]mn) = ([a]m, [a]n).

(a) Show that f is well-defined, that is, if [a]mn = [b]mn then [a]m = [b]m and [a]n = [b]n.

(b) Prove that f is an isomorphism.

Solution.

(a) Let [a]mn, [b]mn ∈ Zmn and suppose that [a]mn = [b]mn. Congruence classes are equal if and only
if their representatives are congruent, that is, a ≡ b mod mn. Thus, a − b = mnk for some k.
Thus, a− b = m(nk) which implies [a]m = [b]m and a− b = n(mk) which implies [a]n = [b]n.

(b) First, let’s show that f is a homomorphism. Let [a]mn, [b]mn ∈ Zmn. Then,

f([a]mn + [b]mn) = f([a + b]mn)

= ([a + b]m, [a + b]n)

= ([a]m + [b]m, [a]n + [b]n)

= ([a]m, [a]n) + ([b]m, [b]n)

= f([a]mn) + f([b]mn)

and

f([a]mn[b]mn) = f([ab]mn)

= ([ab]m, [ab]n)

= ([a]m[b]m, [a]n[b]n)

= ([a]m, [a]n)([b]m, [b]n)

= f([a]mn)f([b]mn).

Therefore, f is a homomorphism for any m,n.

Next, we will use the fact that gcd of (m,n) = 1 to show that f is bijective.

Suppose f([a]mn) = f([b]mn). Then, ([a]m, [a]n) = ([b]m, [b]n), and by equating entries,

[a]m = [b]m =⇒ a− b = mk for some k ∈ Z

[a]n = [a]n =⇒ a− b = nj for some j ∈ Z.

By substitution, mk = nj. Thus, m|nj and (m,n) = 1 from which we conclude that m|j. Write
j = ml for some l ∈ Z. Back substitution gives a − b = nj = nml which implies [a]mn = [b]mn.
Thus, f is injective.

We know that the cardinality of the sets satisfies |Zmn| = mn = |Zm×Zn|. Thus, f is an injective
function from two finite sets of the same cardinality. We conclude that f must be bijective.
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