MTH 310: HW 3

Instructor: Matthew Cha

Due: May 30, 2018

1. (Hungerford 3.1.6 b) Let k be a fixed integer. Show that the set of multiples of k is a subring of \mathbb{Z}.

Solution. Let $k \mathbb{Z}=\{k n: n \in \mathbb{Z}\}$ denote the set of multiples of k.
Let $a, b \in \in k \mathbb{Z}$. Then, $a=k m$ and $b=k n$ for some $m, n \in \mathbb{Z}$. We have that

$$
\begin{aligned}
a+b & =k m+k n=k(m+n) \in k \mathbb{Z} & & (\text { closure of }+) \\
a b & =(k m)(k n)=k(k m n) \in k \mathbb{Z} & & (\text { closure of } \cdot)
\end{aligned}
$$

By properties of 0 , we have that $0=k 0 \in k \mathbb{Z}$.
Let $a \in k \mathbb{Z}$ and write $a=k m$. Then, $-a=-k m=k(-m) \in k \mathbb{Z}$.
Therefore, applying the subring theorem we have shown that $k \mathbb{Z}$ is a subring of \mathbb{Z}.
2. (Hungerford 3.1.11 and 41) Let $S \subset M_{2}(\mathbb{R})$ be the set of matrices of the form $\left(\begin{array}{ll}a & a \\ b & b\end{array}\right)$.
(a) Prove that S is a ring.
(b) Show that $J=\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right)$ is a right identity (that is, $A J=A$ for all $A \in S$). Show that J is not a left identity by finding a matrix $B \in S$ such that $J B \neq B$.
(c) Prove that the matrix $\left(\begin{array}{ll}x & x \\ y & y\end{array}\right)$ is a right identity in S if and only if $x+y=1$.

Solution.

(a) Recall that $M_{2}(\mathbb{R})$ with standard matrix addition and multiplication is a ring. We will show that $S \subset M_{2}(\mathbb{R})$ is a subring, and thus is itself a ring.
Let $M, N \in S$ and write $M=\left(\begin{array}{ll}a & a \\ b & b\end{array}\right)$ and $N=\left(\begin{array}{cc}c & c \\ d & d\end{array}\right)$ for some $a, b, c, d \in \mathbb{R}$. It follows that

$$
\begin{aligned}
M+N & =\left(\begin{array}{ll}
a & a \\
b & b
\end{array}\right)+\left(\begin{array}{ll}
c & c \\
d & d
\end{array}\right) \\
& =\left(\begin{array}{ll}
a+c & a+c \\
b+d & b+d
\end{array}\right) \in S \quad \text { (closure of }+ \text {) } \\
M N & =\left(\begin{array}{ll}
a & a \\
b & b
\end{array}\right)\left(\begin{array}{ll}
c & c \\
d & d
\end{array}\right) \\
& \left.=\left(\begin{array}{ll}
a c+a d & a c+a d \\
b c+b d & b c+b d
\end{array}\right) \in S \quad \text { (closure of } \cdot\right)
\end{aligned}
$$

Let $a=0$ and $b=0$, then $0=\left(\begin{array}{cc}0 & 0 \\ 0 & 0\end{array}\right) \in S$.

Let $M \in S$ and write $M=\left(\begin{array}{cc}a & a \\ b & b\end{array}\right)$. Then,

$$
\left(\begin{array}{ll}
a & a \\
b & b
\end{array}\right)+\left(\begin{array}{cc}
-a & -a \\
-b & -b
\end{array}\right)=0
$$

so that $-M=\left(\begin{array}{cc}-a & -a \\ -b & -b\end{array}\right) \in S$.
Therefore, by the subring theorem S is a subring of $M_{2}(\mathbb{R})$ and furthermore, is a ring on its own.
(b) Let $M=\left(\begin{array}{ll}a & a \\ b & b\end{array}\right)$. It follows that

$$
\left(\begin{array}{ll}
a & a \\
b & b
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
a \cdot 1+a \cdot 0 & a \cdot 1+a \cdot 0 \\
b \cdot 1+b \cdot 0 & b \cdot 1+b \cdot 0
\end{array}\right)=\left(\begin{array}{cc}
a & a \\
b & b
\end{array}\right)
$$

so that J is a right identity.
However,

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right)
$$

so J is not a left identity.
(c) (\Longrightarrow) Suppose $\left(\begin{array}{ll}x & x \\ y & y\end{array}\right)$ is a right identity. Then, for all $M=\left(\begin{array}{ll}a & a \\ b & b\end{array}\right) \in S$ we have that

$$
\left(\begin{array}{ll}
a & a \\
b & b
\end{array}\right)\left(\begin{array}{ll}
x & x \\
y & y
\end{array}\right)=\left(\begin{array}{ll}
a & a \\
b & b
\end{array}\right) .
$$

Multiplying the left hand side we get,

$$
\left(\begin{array}{ll}
a x+a y & a x+a y \\
b x+b y & b x+b y
\end{array}\right)=\left(\begin{array}{ll}
a & a \\
b & b
\end{array}\right)
$$

Equating the entries of the matrices leaves the equations $a x+a y=a$ and $b x+b y=b$. By cancellation, $a(x+y)=a$ implies that $x+y=1$.
(\Longleftarrow) Suppose $x+y=1$. By matrix multiplication, it follows that
$M J=\left(\begin{array}{ll}a & a \\ b & b\end{array}\right)\left(\begin{array}{ll}x & x \\ y & y\end{array}\right)=\left(\begin{array}{ll}a x+a y & a x+a y \\ b x+b y & b x+b y\end{array}\right)=\left(\begin{array}{ll}a(x+y) & a(x+y) \\ b(x+y) & b(x+y)\end{array}\right)=\left(\begin{array}{ll}a & a \\ b & b\end{array}\right)$.
Therefore, J is a right identity.
3. (Hungerford 3.1.21) Show that the subset $R:=\{[0],[2],[4],[6],[8]\} \subset \mathbb{Z}_{10}$ is a subring of \mathbb{Z}_{10} and that R is a ring with identity.

Solution. Notice that $[a] \in R$ if and only if a when divided by 10 leaves an even remainder.
Let $[a],[b] \in R$, and write $a=10 k+2 j$ and $b=10 k^{\prime}+2 j^{\prime}$ for some $j=0,1,2,3,4$. By the Division Algorithm, there exist unique $q, r \in \mathbb{Z}$ such that $a+b=10 q+r$ with $0 \leq r<10$. By substitution, we see that $a+b=10\left(k+k^{\prime}\right)+2\left(j+j^{\prime}\right)=10 q+r$. Therefore, $r=10\left(k+k^{\prime}-q\right)+2\left(j+j^{\prime}\right)=$ $2\left(5\left(k+k^{\prime}-q\right)+\left(j+j^{\prime}\right)\right)$ which implies that $2 \mid r$. We conclude that $[a]+[b] \in R$ (closure of +).
Similarly, we can write $a b=10 q+r$ with $0 \leq r<10$. By substitution it follows that $a b=(10 k+$ $2 j)\left(10 k^{\prime}+2 j^{\prime}\right)=10 q+r$. Solving for r we see that $2 \mid r$. We conclude that $[a][b] \in R$ (closure of \cdot).
By definition $[0] \in R$.
Let $[a] \in R$ and write $a=10 k+2 j$ where $0 \leq 2 j \leq 8$. Then, $-a=-10 k-2 j=-10(k+1)+2(5-j)$ and $0 \leq 2(5-j) \leq 8$, which shows that $-a$ has an even remainder. Therefore, $[-a] \in R$.
By the subring theorem, R is a subring of \mathbb{Z}_{10}.

Notice that

$$
\begin{aligned}
& {[6][2]=[12]=[2]} \\
& {[6][4]=[24]=[4]} \\
& {[6][6]=[36]=[6]} \\
& {[6][8]=[48]=[8] .}
\end{aligned}
$$

Thus, [6] is an identity for R.
4. (Hungerford 3.1.26) Let $L=\{a \in \mathbb{R}: a>0\}$. Define a new addition and multiplication on L by

$$
a \oplus b=a b \quad \text { and } \quad a \otimes b=a^{\ln b}
$$

Prove that L is a commutative ring with identity. (Note there was a mistake in the original problem that is corrected here)

Solution. First, we show that (L, \oplus, \otimes) is a ring. We freely use the properties of normal + and \cdot on \mathbb{R}. Let $a, b, c \in L$
(a) (closure for \oplus) If $a>0$ and $b>0$ then $a b>0$. Thus, $a \oplus b=a b>0$ and $a \oplus b \in L$.
(b) (associative $\oplus)(a \oplus b) \oplus b=(a b) \oplus c=(a b) c=a b c$ and $a \oplus(b \oplus c)=a \oplus(b c)=a(b c)=a b c$. Therefore $(a \oplus b) \oplus c=a \oplus(b \oplus c)$.
(c) (commutative $\oplus) a \oplus b=a b=b a=b \oplus a$.
(d) (zero) $1 \in L$ and $a \oplus 1=a 1=a=1 a=1 \oplus a$. Therefore, $1=0_{L}$ is the zero element.
(e) (inverse \oplus) Let $a \in L$. Then, $a>0$ so that $1 / a>0$ and $1 / a \in L$. Thus, $a \oplus(1 / a)=a(1 / a)=$ $1=0_{L}$ and similarly, $(1 / a) \oplus a=(1 / a)(a)=1=0_{L}$. Therefore, $-a=(1 / a)$ in L.
(f) (closure for \otimes) If $a>0$ and $b>0$ then $a^{\ln b}>0$. Thus, $a \otimes b=a^{\ln b} \in L$.
(g) (associative $\otimes)(a \otimes b) \otimes c=\left(a^{\ln b}\right) \otimes c=\left(a^{\ln b}\right)^{\ln c}=a^{\ln b \ln c}$ and $a \otimes(b \otimes c)=a \otimes\left(b^{\ln c}\right)=a^{\ln \left(b^{\ln c}\right)}=$ $a^{\ln c \ln b}$, where we use the basic identity of \ln that $\ln \left(a^{b}\right)=b \ln a$. Therefore, $(a \otimes b) \otimes c=a \otimes(b \otimes c)$.
(h) (distribution) $a \otimes(b \oplus c)=a \otimes(b c)=a^{\ln (b c)}=a^{\ln b+\ln c}$ and $(a \otimes b) \oplus(a \otimes c)=a^{\ln b} \oplus a^{\ln c}=$ $a^{\ln b} a^{\ln c}=a^{\ln b+\ln c}$, where use used the basic property of \ln that $\ln (a b)=\ln a+\ln b$. Therefore, $a \otimes(b \oplus c)=(a \otimes b) \oplus(a \otimes c)$.

Let $e \in L$ be the unique base of the natural \log, that is, $e^{\ln a}=a$ and $\ln e=1$. It follows that $a \otimes e=a^{\ln e}=a^{1}=a$ and $e \otimes a=e^{\ln a}=a$ Therefore, L is a ring with identity $1_{L}=e$.
Let $a, b \in L$. We have $a \otimes b=a^{\ln b}=e^{\ln \left(a^{\ln b}\right)}=e^{\ln b \ln a}$ and $b \otimes a=b^{\ln a}=e^{\ln \left(b^{\ln a}\right)}=e^{\ln a \ln b}$. Therefore, $a \otimes b=b \otimes a$ and L is a commutative ring.
5. (Hungerford 3.2.8) Let R be a ring and $b \in R$ be fixed and define $T:=\{r b: r \in R\}$. Prove that $T \subset R$ is a subring.

Solution. Let $x, y \in T$ and write $x=r_{1} b$ and $y=r_{2} b$ for some $r_{1}, r_{2} \in R$. Then, $x+y=r_{1} b+r_{2} b=$ $\left(r_{1}+r_{2}\right) b$ where $r_{1}+r_{2} \in R$. Thus, $x+y \in T$ (closure of +). Further, $x \cdot y=\left(r_{1} b\right)\left(r_{2} b\right)=\left(r_{1} b r_{2}\right) b$ where $r_{1} b r_{2} \in R$. Thus, $x \cdot y \in T$ (closure of \cdot).
We have that $b \cdot 0_{R}=0_{R}$. Thus, $0_{R} \in T$.
From basic ring properties, $-x=-r_{1} b=\left(-r_{1}\right) b$ where $-r_{1} \in R$. Thus, $-x \in T$.
Therefore, by the subring theorem T is a subring of R.
6. (Hungerford 3.2.25) Let $S \subset R$ be a subring and suppose R is an integral domain. Prove that if S is an integral domain then the identities are equal $1_{S}=1_{R}$. (Note there was a mistake in the original problem that is corrected here.)

Solution. Since S is an integral domain, S is a ring with identity call it 1_{S}. Let $s \in S$ be nonzero. It follows that

$$
\begin{aligned}
0_{R} & =s-s \\
& =s 1_{R}-s 1_{S} \\
& =s\left(1_{R}-1_{S}\right)
\end{aligned}
$$

Since R is an integral domain and $s \in S \subset R$ is nonzero, we conclude that $1_{R}-1_{S}=0_{R}$. Therefore, $1_{S}=-\left(-1_{R}\right)=1_{R}$.
7. (Hungerford 3.2.31) A Boolean ring is a ring R with identity in which $x^{2}=x$ for every $x \in R$. If R is a Boolean ring prove that R is commutative. [Hint: Expand $(a+b)^{2}$.]
Solution. Let $a, b \in R$. Then since R is a Boolean ring we have that $(a+b)^{2}=a+b$ Following the hint, expand the product

$$
(a+b)^{2}=a^{2}+a b+b a+b^{2}=a+a b+b a+b
$$

By substitution, $a+b=a+a b+b a+b$. By subtraction, $0_{R}=a b+b a$ and further, $a b=-b a$.
Apply the above the case $a=b=1_{R}$ we have that $1_{R} 1_{R}=-1_{R} 1_{R}$ or simply $1_{R}=-1_{R}$.
Therefore, $a b=-b a=\left(-1_{R}\right) b a=\left(1_{R}\right) b a=b a$. We conclude that R is commutative.
8. (Hungerford 3.3.9) If $f: \mathbb{Z} \rightarrow \mathbb{Z}$ is an isomorphism, prove that f is the identity map. [Hint: What is $f(1), f(1+1), \ldots ?]$

Solution. Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be an isomorphism. Since \mathbb{Z} is a ring with identity 1 , basic ring homomorphism properties of Theorem 3.10 imply that $f(0)=0, f(1)=1$ and $f(-1)=-1$.
Let $k \in \mathbb{Z}$ and $k>0$. We can write $k=1+1+\cdots+1$ adding $1 k$ times. Since f respects addition we have that

$$
f(k)=f(1+1+\cdots+1)=f(1)+f(1)+\cdots+f(1)=1+1 \cdots+1=k
$$

Thus, if $k>0$ then $f(k)=k$.
If $k<0$ then $-k>0$. Since f respects multiplication we have that $f(-k)=f(-1) f(k)=(-1)(k)=$ $-k$.
We conclude $f(k)=k$ for all \mathbb{Z} and thus f is the identity map.
9. (Hungerford 3.3. 27 and 29) If $g: R \rightarrow S$ and $f: S \rightarrow T$ are homomorphisms, show that $f \circ g: R \rightarrow T$ is a homomorphism. If f and g are isomorphisms, show that $f \circ g$ is an isomorphism.
Solution. Let $a, b \in R$. We have that

$$
\begin{aligned}
f \circ g(a+b) & =f(g(a+b)) & & \\
& =f(g(a)+g(b)) & & (g \text { respects }+) \\
& =f(g(a))+f(g(b)) & & (f \text { respects }+) \\
& =f \circ g(a)+f \circ g(b) & &
\end{aligned}
$$

and similarly,

$$
\begin{aligned}
f \circ g(a \cdot b) & =f(g(a b)) & & \\
& =f(g(a) g(b)) & & (g \text { respects } \cdot) \\
& =f(g(a)) f(g(b)) & & (f \text { respects } \cdot) \\
& =(f \circ g(a))(f \circ g(b)) . & &
\end{aligned}
$$

Thus, $f \circ g$ is a homomorphism of rings.
Further, suppose f and g are isomorphisms. Then, f and g are both injective and surjective.

Suppose that $f \circ g(a)=f \circ g(b)$ which we write as $f(g(a))=f(g(b))$. Then, since f is injective we have that $g(a)=g(b)$. Since g is injective $a=b$. Thus, $f \circ g$ is injective
Let $t \in T$. Since f is surjective there exists $s \in S$ such that $f(s)=t$. Since g is surjective there exists $r \in R$ such that $g(r)=s$. By substitution, we have that $f \circ g(r)=f(g(r))=t$. Thus, $f \circ g$ is surjective.
We have shown that $f \circ g$ is bijective. Since we have already shown that $f \circ g$ is a homomorphism, we conclude that $f \circ g$ is an isomorphism.
10. (Hungerford 3.3.41) Let $m, n \in \mathbb{Z}$ be positive with $\operatorname{gcd}(m, n)=1$ and define the map $f: \mathbb{Z}_{m n} \rightarrow$ $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$ by $f\left([a]_{m n}\right)=\left([a]_{m},[a]_{n}\right)$.
(a) Show that f is well-defined, that is, if $[a]_{m n}=[b]_{m n}$ then $[a]_{m}=[b]_{m}$ and $[a]_{n}=[b]_{n}$.
(b) Prove that f is an isomorphism.

Solution.

(a) Let $[a]_{m n},[b]_{m n} \in \mathbb{Z}_{m n}$ and suppose that $[a]_{m n}=[b]_{m n}$. Congruence classes are equal if and only if their representatives are congruent, that is, $a \equiv b \bmod m n$. Thus, $a-b=m n k$ for some k. Thus, $a-b=m(n k)$ which implies $[a]_{m}=[b]_{m}$ and $a-b=n(m k)$ which implies $[a]_{n}=[b]_{n}$.
(b) First, let's show that f is a homomorphism. Let $[a]_{m n},[b]_{m n} \in \mathbb{Z}_{m n}$. Then,

$$
\begin{aligned}
f\left([a]_{m n}+[b]_{m n}\right) & =f\left([a+b]_{m n}\right) \\
& =\left([a+b]_{m},[a+b]_{n}\right) \\
& =\left([a]_{m}+[b]_{m},[a]_{n}+[b]_{n}\right) \\
& =\left([a]_{m},[a]_{n}\right)+\left([b]_{m},[b]_{n}\right) \\
& =f\left([a]_{m n}\right)+f\left([b]_{m n}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
f\left([a]_{m n}[b]_{m n}\right) & =f\left([a b]_{m n}\right) \\
& =\left([a b]_{m},[a b]_{n}\right) \\
& =\left([a]_{m}[b]_{m},[a]_{n}[b]_{n}\right) \\
& =\left([a]_{m},[a]_{n}\right)\left([b]_{m},[b]_{n}\right) \\
& =f\left([a]_{m n}\right) f\left([b]_{m n}\right) .
\end{aligned}
$$

Therefore, f is a homomorphism for any m, n.
Next, we will use the fact that gcd of $(m, n)=1$ to show that f is bijective.
Suppose $f\left([a]_{m n}\right)=f\left([b]_{m n}\right)$. Then, $\left([a]_{m},[a]_{n}\right)=\left([b]_{m},[b]_{n}\right)$, and by equating entries,

$$
\begin{array}{lll}
{[a]_{m}=[b]_{m}} & \Longrightarrow & a-b=m k \text { for some } k \in \mathbb{Z} \\
{[a]_{n}=[a]_{n}} & \Longrightarrow & a-b=n j \text { for some } j \in \mathbb{Z}
\end{array}
$$

By substitution, $m k=n j$. Thus, $m \mid n j$ and $(m, n)=1$ from which we conclude that $m \mid j$. Write $j=m l$ for some $l \in \mathbb{Z}$. Back substitution gives $a-b=n j=n m l$ which implies $[a]_{m n}=[b]_{m n}$. Thus, f is injective.
We know that the cardinality of the sets satisfies $\left|\mathbb{Z}_{m n}\right|=m n=\left|\mathbb{Z}_{m} \times \mathbb{Z}_{n}\right|$. Thus, f is an injective function from two finite sets of the same cardinality. We conclude that f must be bijective.

