MTH 310: HW 3

Instructor: Matthew Cha

Due: May 30, 2018

- 1. (Hungerford 3.1.6 b) Let k be a fixed integer. Show that the set of multiples of k is a subring of \mathbb{Z} .
- 2. (Hungerford 3.1.11 and 41) Let $S \subset M_2(\mathbb{R})$ be the set of matrices of the form $\begin{pmatrix} a & a \\ b & b \end{pmatrix}$.
 - (a) Prove that S is a ring.
 - (b) Show that $J = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$ is a *right indentity* (that is, AJ = A for all $A \in S$). Show that J is not a left identity by finding a matrix $B \in S$ such that $JB \neq B$.
 - (c) Prove that the matrix $\begin{pmatrix} x & x \\ y & y \end{pmatrix}$ is a right identity in S if and only if x + y = 1.
- 3. (Hungerford 3.1.21) Show that the subset $R := \{[0], [2], [4], [6], [8]\} \subset \mathbb{Z}_{10}$ is a subring of \mathbb{Z}_{10} and that R is a ring with identity.
- 4. (Hungerford 3.1.26) Let $L = \{a \in \mathbb{R} : a > 0\}$. Define a new addition and multiplication on L by

$$a \oplus b = ab$$
 and $a \otimes b = a^{\ln b}$.

Prove that L is a commutative ring with identity.

- 5. (Hungerford 3.2.8) Let R be a ring and $b \in R$ be fixed and define $T := \{rb : r \in R\}$. Prove that $T \subset R$ is a subring.
- 6. (Hungerford 3.2.25) Let $S \subset R$ be a subring and suppose R is an integral domain. Prove that S is an integral domain and that the identities are equal $1_S = 1_R$.
- 7. (Hungerford 3.2.31) A Boolean ring is a ring R with identity in which $x^2 = x$ for every $x \in R$. If R is a Boolean ring prove that R is commutative. [Hint: Expand $(a + b)^2$.]
- 8. (Hungerford 3.3.9) If $f : \mathbb{Z} \to \mathbb{Z}$ is an isomorphism, prove that f is the identity map. [*Hint*: What is $f(1), f(1+1), \ldots$?]
- 9. (Hungerford 3.3. 27 and 29) If $g : R \to S$ and $f : S \to T$ are homomorphisms, show that $f \circ g : R \to T$ is a homomorphism. If f and g are isomorphisms, show that $f \circ g$ is an isomorphism.
- 10. (Hungerford 3.3.41) Let $m, n \in \mathbb{Z}$ be positive with gcd (m, n) = 1 and define the map $f : \mathbb{Z}_{mn} \to \mathbb{Z}_m \times \mathbb{Z}_n$ by $f([a]_{mn}) = ([a]_m, [a]_n)$.
 - (a) Show that f is well-defined, that is, if $[a]_{mn} = [b]_{mn}$ then $[a]_m = [b]_m$ and $[a]_n = [b]_n$.
 - (b) Prove that f is an isomorphism.
- 11. (EC-worth .5% of final grade) Let K be a field and suppose $K \subset L$ where L is a field. Then, L can be thought of as a vector space over K, for example, if $\mathbf{x}, \mathbf{y} \in L$ are vectors and $a, b \in K$ are scalars then $a(\mathbf{x} + \mathbf{y}) = a\mathbf{x} + a\mathbf{y}, (a + b)\mathbf{x} = a\mathbf{x} + b\mathbf{y}$, and $a(b\mathbf{x}) = (ab)\mathbf{x}$.

Let K, L, M be fields with $K \subset L \subset M$. Suppose the dimension of M as a vector space over K is finite with dimension $d < \infty$. Prove that d = mn where m is the dimension of M as a vector space over L and n is the dimension of L as a vector space over K.