MTH 310: HW 3

Instructor: Matthew Cha

Due: May 30, 2018

1. (Hungerford 3.1.6 b) Let k be a fixed integer. Show that the set of multiples of k is a subring of \mathbb{Z}.
2. (Hungerford 3.1.11 and 41) Let $S \subset M_{2}(\mathbb{R})$ be the set of matrices of the form $\left(\begin{array}{ll}a & a \\ b & b\end{array}\right)$.
(a) Prove that S is a ring.
(b) Show that $J=\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right)$ is a right indentity (that is, $A J=A$ for all $A \in S$). Show that J is not a left identity by finding a matrix $B \in S$ such that $J B \neq B$.
(c) Prove that the matrix $\left(\begin{array}{ll}x & x \\ y & y\end{array}\right)$ is a right identity in S if and only if $x+y=1$.
3. (Hungerford 3.1.21) Show that the subset $R:=\{[0],[2],[4],[6],[8]\} \subset \mathbb{Z}_{10}$ is a subring of \mathbb{Z}_{10} and that R is a ring with identity.
4. (Hungerford 3.1.26) Let $L=\{a \in \mathbb{R}: a>0\}$. Define a new addition and multiplication on L by

$$
a \oplus b=a b \quad \text { and } \quad a \otimes b=a^{\ln b}
$$

Prove that L is a commutative ring with identity.
5. (Hungerford 3.2.8) Let R be a ring and $b \in R$ be fixed and define $T:=\{r b: r \in R\}$. Prove that $T \subset R$ is a subring.
6. (Hungerford 3.2.25) Let $S \subset R$ be a subring and suppose R is an integral domain. Prove that S is an integral domain and that the identities are equal $1_{S}=1_{R}$.
7. (Hungerford 3.2.31) A Boolean ring is a ring R with identity in which $x^{2}=x$ for every $x \in R$. If R is a Boolean ring prove that R is commutative. [Hint: Expand $(a+b)^{2}$.]
8. (Hungerford 3.3.9) If $f: \mathbb{Z} \rightarrow \mathbb{Z}$ is an isomorphism, prove that f is the identity map. [Hint: What is $f(1), f(1+1), \ldots ?]$
9. (Hungerford 3.3. 27 and 29) If $g: R \rightarrow S$ and $f: S \rightarrow T$ are homomorphisms, show that $f \circ g: R \rightarrow T$ is a homomorphism. If f and g are isomorphisms, show that $f \circ g$ is an isomorphism.
10. (Hungerford 3.3.41) Let $m, n \in \mathbb{Z}$ be positive with $\operatorname{gcd}(m, n)=1$ and define the map $f: \mathbb{Z}_{m n} \rightarrow$ $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$ by $f\left([a]_{m n}\right)=\left([a]_{m},[a]_{n}\right)$.
(a) Show that f is well-defined, that is, if $[a]_{m n}=[b]_{m n}$ then $[a]_{m}=[b]_{m}$ and $[a]_{n}=[b]_{n}$.
(b) Prove that f is an isomorphism.
11. (EC-worth $\mathbf{. 5 \%}$ of final grade) Let K be a field and suppose $K \subset L$ where L is a field. Then, L can be thought of as a vector space over K, for example, if $\mathbf{x}, \mathbf{y} \in L$ are vectors and $a, b \in K$ are scalars then $a(\mathbf{x}+\mathbf{y})=a \mathbf{x}+a \mathbf{y},(a+b) \mathbf{x}=a \mathbf{x}+b \mathbf{y}$, and $a(b \mathbf{x})=(a b) \mathbf{x}$.
Let K, L, M be fields with $K \subset L \subset M$. Suppose the dimension of M as a vector space over K is finite with dimension $d<\infty$. Prove that $d=m n$ where m is the dimension of M as a vector space over L and n is the dimension of L as a vector space over K.

