MTH 310: HW 2

Instructor: Matthew Cha

Due: May 30, 2018

1. (Hungerford 1.3.8)

(a) Verify that $x-1$ is a factor of $x^{n}-1$.
(b) If n is a positive integer, prove that the prime factorization of $2^{2 n} 3^{n}-1$ includes 11 as one of the prime factors. [Hint: $\left(2^{2 n} 3^{n}=\left(2^{2} 3\right)^{n}\right)$.]

Solution.

(a) Consider the following product

$$
\begin{aligned}
(x-1)\left(x^{n-1}+x^{n-2}+\ldots+x+1\right) & =(x-1)\left(\sum_{i=0}^{n-1} x^{i}\right)=\sum_{i=0}^{n-1}\left(x^{i+1}-x^{i}\right) \\
& =x^{n}-1
\end{aligned}
$$

where the last equality follows since the sum is a telescoping sum. Thus, $x-1$ is a factor of $x^{n}-1$.
(b) Applying the law of exponents gives

$$
2^{2 n} 3^{n}-1=\left(2^{2} 3\right)^{n}-1=12^{n}-1
$$

From part (a) 11 is a factor of $12^{n}-1$.
2. (Hungerford 1.3.21) If $c^{2}=a b$, the gcd of $(a, b)=1$ and $0 \leq a, b$ prove that a and b are perfect squares.

Solution. Note that we must have that $a, b \geq 0$ for them to be perfect squares, that is, $a=n^{2}$ and $b=m^{2}$ for some $m, n \in \mathbb{Z}$.
First, we prove that a is a perfect square if and only if $a=p_{1}^{2} p_{2}^{2} \cdots p_{k}^{2}$ for some primes $p_{1}, \ldots p_{k}$. Suppose that $a=n^{2}$ is a perfect square. Then, by the FTA we can write a prime factorization for $n=p_{1} p_{2} \cdots p_{k}$ for some primes $p_{1}, \ldots p_{k}$. Thus, $a=p_{1}^{2} p_{2}^{2} \cdots p_{k}^{2}$.
By the FTA, we can write $c=p_{1} p_{2} \cdots p_{k}$ for some primes p_{1}, \ldots, p_{k} and WLOG assume the primes are positive. We have that

$$
c^{2}=p_{1}^{2} p_{2}^{2} \cdots p_{k}^{2}=a b
$$

The FTA and the equation above imply that the prime decompositions for a and b must only consist of the prime $p_{1}, p_{2}, \ldots, p_{k}$. Thus, it follows that

$$
\begin{aligned}
a & =p_{1}^{n_{1}} p_{2}^{n_{2}} \cdots p_{k}^{n_{k}} \quad \text { where } \quad n_{j}=0,1, \text { or } 2 \quad \forall j \\
b & =p_{1}^{2-n_{1}} p_{2}^{2-n_{2}} \cdots p_{k}^{2-n_{k}} .
\end{aligned}
$$

Suppose $n_{j}=1$. Then, $p_{j} \mid a$ and $p_{j} \mid b$ is a common divisor of a and b and $p_{j}>1$ since p_{j} is a prime. This contradicts the assumption that gcd of $(a, b)=1$. Thus, $n_{j}=0$ or 2 . Therefore, by applying the criteria for perfect square we proved earlier, a and b are perfect squares.
3. (Hungerford 1.3.31) If p is a positive prime, prove that \sqrt{p} is irrational.

Solution. Let $p>0$ be a prime and suppose that \sqrt{p} is rational, that is,

$$
p=\frac{a^{2}}{b^{2}} \quad \text { for some } \quad a, b \in \mathbb{Z}
$$

By the FTA, we can write $a=p_{1} p_{2} \cdots p_{k}$ and $b=q_{1} q_{2} \cdots q_{l}$ for some primes p_{i} and q_{j}. From $N=p b^{2}=a^{2}$ it follows that

$$
N=p\left(q_{1}^{2} q_{2}^{2} \cdots q_{l}^{2}\right)=p_{1}^{2} p_{2}^{2} \cdots p_{k}^{2}
$$

Thus, we have achieved two prime decompositions for the integer N. The first $N=p\left(q_{1}^{2} q_{2}^{2} \cdots q_{l}^{2}\right)$ has $2 l+1$ an odd number of primes in the decomposition while the second $N=p_{1}^{2} p_{2}^{2} \cdots p_{k}^{2}$ has $2 k$ an even number of primes in the decomposition. This contradicts the FTA. Therefore, \sqrt{p} is not rational.
4. (Hungerford 1.3.33) Let $p>1$. If $2^{p}-1$ is prime, prove that p is prime. [Hint: Prove the contrapositive: If p is composite, so is $2^{p}-1$.]

Solution. Suppose $p>1$ is composite, that is, $p=a b$ for some $a, b \in \mathbb{Z}$ neither equal to 0 or ± 1.
WLOG we can assume that $a, b>1$, since $p>1$ it is true that $p=|a||b|$.
By the law of exponents we have that $2^{p}-1=2^{a b}-1=\left(2^{a}\right)^{b}-1$. Applying Problem 1, we know that $2^{a}-1$ divides $2^{p}-1$. Since $a>1$, we have that $2<2^{a}$ and $1<2^{a}-1$. Since $b>1$, we have that $2^{a}<2^{a b}$ so that $2^{a}-1<2^{p}-1$. Therefore, there exists a divisor $2^{a}-1 \mid 2^{p}-1$ that is strictly between 1 and $2^{p}-1$. We conclude that $2^{p}-1$ is not prime.
5. (Hungerford 2.1.3) Every published book has a ten-digit ISBN-10 number that is usually of the form $x_{1}-x_{2} x_{3} x_{4}-x_{5} x_{6} x_{7} x_{8} x_{9}-x_{10}$, where each $0 \leq x_{i} \leq 9$ is a single digit. Sometimes the last digit is the letter X, and should be treated as if it were the number 10 . The first 9 digits identify the book. The last digit x_{10} is a check digit; it is chosen so that

$$
10 x_{1}+9 x_{2}+8 x_{3}+7 x_{4}+6 x_{5}+5 x_{6}+4 x_{7}+3 x_{8}+2 x_{9}+x_{10} \equiv 0 \quad \bmod 11 .
$$

If an error is made when scanning or keying the ISBN number into a computer the left side of the congruence will not be congruent to 0 modulo 11 , and the number will be rejected as invalid. Which of the following are apparently valid ISBN numbers?
(a) 3-540-90518-9
(b) 0-031-10559-5
(c) 0-385-49596-X.

Solution.

(a) 3-540-90518-9 is a valid ISBN-10 since

$$
10 \cdot 3+9 \cdot 5+8 \cdot 4+7 \cdot 0+6 \cdot 9+5 \cdot 0+4 \cdot 5+3 \cdot 1+2 \cdot 8+9=19 \cdot 11 \equiv 0 \quad \bmod 11
$$

(b) 0-031-10559-5 is not a valid ISBN-10 since

$$
10 \cdot 0+9 \cdot 0+8 \cdot 3+7 \cdot 1+6 \cdot 1+5 \cdot 0+4 \cdot 5+3 \cdot 5+2 \cdot 9+5=95 \not \equiv 0 \quad \bmod 11
$$

(c) $0-385-49596-\mathrm{X}$ is a valid ISBN-10 since

$$
10 \cdot 0+9 \cdot 3+8 \cdot 8+7 \cdot 5+6 \cdot 4+5 \cdot 9+4 \cdot 5+3 \cdot 9+2 \cdot 6+10=24 \cdot 11 \equiv 0 \quad \bmod 11
$$

6. (Hungerford 2.1.8) Prove that every odd integer is congruent to 1 modulo 4 or 3 modulo 4 .

Solution. Let $n=2 k+1$ be odd. Then, by the division algorithm for k when divided by 2 there exist $q, r \in \mathbb{Z}$ such that $k=2 q+r$ for $0 \leq r<2$.
Case 1. $(r=0)$ Then, $n=2(2 j)+1=4 j+1$. Therefore, $n-1=4 j$ so that $n \equiv 1 \bmod 4$.
Case 2. $(r=1)$ Then, $n=2(2 j+1)+1=4 j+3$. Therefore, $n-3=4 j$ so that $n \equiv 3 \bmod 4$. In both cases, n is congruent to 1 or 2 modulo 4 .
7. (Hungerford 2.1.15) If the greatest common divisor $(a, n)=1$, prove that there is an integer $b \in \mathbb{Z}$ such that $a b \equiv 1 \bmod n$.

Solution. Suppose that the $\operatorname{gcd}(a, n)=1$. Then, Theorem 1.2 there are $u, v \in \mathbb{Z}$ such that $a u+n v=1$. Therefore, $a u-1=n v$ so that $a u \equiv 1 \bmod n$.
8. (Hungerford 2.1.22)
(a) Give an example to show that the following statement is false: If $a b \equiv a c \bmod n$ and $a \not \equiv 0$ $\bmod n$, then $b \equiv c \bmod n$.
(b) Prove that the statement in part (a) is true whenever the $\operatorname{gcd}(a, n)=1$.

Solution.

(a) Let $a=2$ and $n=6$. For $b=3$ and $c=6$, we have that $2 \cdot 3=6$ and $2 \cdot 6=12$. So that $2 \cdot 3 \equiv 0$ $\bmod 6$ and $2 \cdot 6 \equiv 0 \bmod 6$. By transitivity of congruence, $2 \cdot 3 \equiv 2 \cdot 6 \bmod 6$.
But, by Corollary 2.5 we know that $3 \not \equiv 6 \bmod 6$.
(b) Suppose that $(a, n)=1$ and $a b \equiv a c \bmod n$. Then, $a b-a c=n k$ for some $k \in \mathbb{Z}$. Thus, $n \mid a(b-c)$. By Theorem 1.4, $n \mid a(b-c)$ and $(a, n)=1$ implies that $n \mid(b-c)$. Therefore, $b-c=n j$ for some j and thus, $b \equiv c \bmod n$.
9. (Hungerford 2.2.11 and 15) Solve the equation $x+x+x=[0]$ in \mathbb{Z}_{3}. (State the properties of modular arithmetic you are using in each step of your solution, see Theorem 2.7)
Then, simplify the expression $([a]+[b])^{3}$ in \mathbb{Z}_{3}.
Solution. Let $[a] \in \mathbb{Z}_{3}$ where $a \in \mathbb{Z}$ is any representative in the class $[a]$. Then, by the definition of addition for congruence classes

$$
[a]+[a]+[a]=[a+a]+[a]=[a+a+a]=[3 a] .
$$

We have that $3 a \equiv 0 \bmod 3$ for any $a \in \mathbb{Z}$ and thus, by Theorem 2.3, [3a] $=[0]$. Therefore, all elements of \mathbb{Z}_{3} are solutions to $x+x+x=[0]$.
Now, simplify $([a]+[b])^{3}$ in \mathbb{Z}_{3} :

$$
\begin{array}{rlrl}
([a]+[b])^{3} & =([a]+[b])([a]+[b])([a]+[b])^{3} & \\
& =([a]+[b])([a][a]+[a][b]+[b][a]+[b][b]) & & \\
& =([a]+[b])\left(\left[a^{2}\right]+[2 a b]+\left[b^{2}\right]\right) & & \text { (by distribution) } \\
& =\left([a]\left[a^{2}\right]+[a][2 a b]+[a]\left[b^{2}\right]+[b]\left[a^{2}\right]+[b][2 a b]+[b]\left[b^{2}\right]\right. & & \text { (by distribution) } \\
& =\left[a^{3}\right]+\left[2 a^{2} b\right]+\left[a b^{2}\right]+\left[a^{2} b\right]+\left[2 a b^{2}\right]+\left[b^{3}\right] & & \text { (by multiplication of classes) } \\
& =\left[a^{3}\right]+\left[3 a^{2} b\right]+\left[3 a b^{2}\right]+\left[b^{3}\right] & & \text { (by addition of classes) } \\
& =[a]^{3}+[0]+[0]+[b]^{3} & & \text { (by previous part of problem) } \\
& =[a]^{3}+[b]^{3} . & &
\end{array}
$$

10. (Hungerford 2.2.16) Find all $[a] \in \mathbb{Z}_{5}$ for which the equation $[a] \cdot x=[1]$ has a solution.

Solution. The multiplication table for \mathbb{Z}_{5} is given by

\cdot	$[0]$	$[1]$	$[2]$	$[3]$	$[4]$
$[0]$	$[0]$	$[0]$	$[0]$	$[0]$	$[0]$
$[1]$	$[0]$	$[1]$	$[2]$	$[3]$	$[4]$
$[2]$	$[0]$	$[2]$	$[4]$	$[1]$	$[3]$
$[3]$	$[0]$	$[3]$	$[1]$	$[4]$	$[2]$
$[4]$	$[0]$	$[4]$	$[3]$	$[2]$	$[1]$

From the multiplication table, every row besides [0] contains [1]. It follows that [1], [2], [3], [4] are have solutions to the equation $[a] \cdot x=[1]$.
11. (Hungerford 2.3.2 and 6) Find all zero divisors in (a) \mathbb{Z}_{7} and (b) \mathbb{Z}_{9}.

Next, prove that if n is composite then that there is at least one zero divisor in \mathbb{Z}_{n}.
Solution. Recall, a is a zero divisor if $a \neq 0$ and $a b=0$. Thus, to find all zero divisor we look at the multiplication tables.
The multiplication table for \mathbb{Z}_{7} is given by,

	\cdot	$[0]$	$[1]$	$[2]$	$[3]$	$[4]$	$[5]$	$[6]$
	$[0]$	$[0]$	$[0]$	$[0]$	$[0]$	$[0]$	$[0]$	$[0]$
	$[1]$	$[0]$	$[1]$	$[2]$	$[3]$	$[4]$	$[5]$	$[6]$
$\mathbb{Z}_{7}:$	$[2]$	$[0]$	$[2]$	$[4]$	$[6]$	$[1]$	$[3]$	$[5]$
	$[3]$	$[0]$	$[3]$	$[6]$	$[2]$	$[5]$	$[1]$	$[4]$
	$[4]$	$[0]$	$[4]$	$[1]$	$[5]$	$[2]$	$[6]$	$[3]$
	$[5]$	$[0]$	$[5]$	$[3]$	$[1]$	$[6]$	$[4]$	$[2]$
	$[6]$	$[0]$	$[6]$	$[5]$	$[4]$	$[3]$	$[2]$	$[1]$

[0] does not appear in the table out side of the row and column of [0]. Thus, there are no zero-divisors.

	\cdot	$[0]$	$[1]$	$[2]$	$[3]$	$[4]$	$[5]$	$[6]$	$[7]$	$[8]$
	$[0]$	$[0]$	$[0]$	$[0]$	$[0]$	$[0]$	$[0]$	$[0]$	$[0]$	$[0]$
$[1]$	$[0]$	$[1]$	$[2]$	$[3]$	$[4]$	$[5]$	$[6]$	$[7]$	$[8]$	
$\mathbb{Z}_{9}:$	$[3]$	$[0]$	$[2]$	$[4]$	$[6]$	$[8]$	$[1]$	$[3]$	$[5]$	$[7]$
$[4]$	$[0]$	$[3]$	$[6]$	$[0]$	$[3]$	$[6]$	$[0]$	$[3]$	$[6]$	
	$[0]$	$[4]$	$[8]$	$[3]$	$[7]$	$[2]$	$[6]$	$[1]$	$[5]$	
$[5]$	$[0]$	$[5]$	$[1]$	$[6]$	$[2]$	$[7]$	$[3]$	$[8]$	$[4]$	
$[6]$	$[0]$	$[6]$	$[3]$	$[0]$	$[6]$	$[3]$	$[0]$	$[6]$	$[3]$	
$[7]$	$[0]$	$[7]$	$[5]$	$[3]$	$[1]$	$[8]$	$[6]$	$[4]$	$[2]$	
	$[8]$	$[0]$	$[8]$	$[7]$	$[6]$	$[5]$	$[4]$	$[3]$	$[2]$	$[1]$

Thus, there are two zero divisors in \mathbb{Z}_{9}, [3] and [6].
Next, suppose n is composite. Thus, there is a divisor $a \mid n$ such that $1<a<n$ and $a k=n$ for some $k \in \mathbb{Z}$ and $1<k<n$ It follows that $[a k]=[0]$. By multiplication of congruence classes, $[a k]=[a][k]$. Therefore, $[a][k]=[0]$ and since $1<k<n$ we have that $[k] \neq[0]$. We can conclude that $[a]$ is a zero divisor in \mathbb{Z}_{n}.
12. (Hungerford 2.3.10) Prove that every nonzero element of \mathbb{Z}_{n} is either a unit or a zero divisor, but not both.

Solution. Let $[a]$ be a unit in \mathbb{Z}_{n} and suppose $[a]$ is a zero divisor. Then, there exists $[b],[c] \in \mathbb{Z}_{n}$ such that $[a][b]=[1]=[b][a]$ and $[a][c]=[0]$ where $[c] \neq[0]$. By substitution, it follows that

$$
\begin{aligned}
{[0] } & =[b \cdot 0]=[b][0] \\
& =[b]([a][c])=([b][a])[c] \\
& =[1][c] \\
& =[c] .
\end{aligned}
$$

We have reached a contradiction, thus a cannot be both a unit and a zero-divisor.
Now let $[a] \in \mathbb{Z}_{n}$ and $a>0$ be a representative of the class $[a]$. Then, either $(a, n)=1$ or $(a, n)=d>1$. If $(a, n)=1$ then by Theorem $2.10[a]$ is unit.

If $(a, n)=d>1$, we can write $a=d k$ and $n=d l$ for some $k, l \in \mathbb{Z}$. Moreover, since $n>0$ we can choose $0<l<|n|$ so that $[l] \neq[0]$. It follows that $a l=d k l=k n$ so that $[a][l]=[0]$ in \mathbb{Z}_{n} with $[l] \neq[0]$. We conclude that $[a]$ is a zero divisor.
13. (Hungerford 2.3.17) Prove that the product of two units in \mathbb{Z}_{n} is also a unit.

Solution. Let $[a],[b] \in \mathbb{Z}_{n}$ be units. Then, there are $[c],[d] \in \mathbb{Z}_{n}$ such that $[a][c]=[1]=[c][a]$ and $[b][d]=[1]=[d][b]$. We check that $[c d]$ is an inverse for $[a b]$

$$
\begin{aligned}
{[a b][c d] } & =[a b c d]=[a c b d] \\
& =[a c][b d] \\
& =([a][c])([b][d]) \\
& =[1][1]=[1]
\end{aligned}
$$

and

$$
[c d][a b]=[c d a b]=[a b c d]=[a b][c d]=[1] .
$$

Therefore, $[a][b]=[a b]$ is a unit in \mathbb{Z}_{n}.
14. (EC-worth $\mathbf{. 5 \%}$ of final grade) Find all elements of the set $[2]_{7} \cap[3]_{5}$.

