MTH 310: HW 2

Instructor: Matthew Cha

Due: May 30, 2018

1. (Hungerford 1.3.8)

(a) Verify that  — 1 is a factor of ™ — 1.
(b) If n is a positive integer, prove that the prime factorization of 2273" — 1 includes 11 as one of the
prime factors. [Hint: (22"3" = (223)").]

Solution.

(a) Consider the following product

(m—l)(x”_1+x”_2+...+x+1):(x—l)( 4_ xz) :i(xi"’l—xi)
=z" —1,

where the last equality follows since the sum is a telescoping sum. Thus, x —1 is a factor of ™ —1.

(b) Applying the law of exponents gives
223" 1 = (223)" —1=12" - 1.
From part (a) 11 is a factor of 12" — 1.

2. (Hungerford 1.3.21) If ¢ = ab, the ged of (a,b) = 1 and 0 < a,b prove that a and b are perfect
squares.

Solution. Note that we must have that a,b > 0 for them to be perfect squares, that is, a = n? and
b =m? for some m,n € Z.

First, we prove that a is a perfect square if and only if a = p?p3---p? for some primes pi,...py.
Suppose that a = n? is a perfect square. Then, by the FTA we can write a prime factorization for
n = pips - - - py for some primes p1,...px. Thus, a = pp} - pi.

By the FTA, we can write ¢ = p1ps - - - pi for some primes p1,...,pr and WLOG assume the primes
are positive. We have that

¢ =pip} - pi = ab.
The FTA and the equation above imply that the prime decompositions for a and b must only consist
of the prime p1,po,...,pr. Thus, it follows that

a=pitpy? - ppk where n; =0,1, or 2 Vj
b= p%_nlpg_ni’ .. .piink.

Suppose n; = 1. Then, pj|a and p;|b is a common divisor of a and b and p; > 1 since p; is a prime.
This contradicts the assumption that ged of (a,b) = 1. Thus, n; = 0 or 2. Therefore, by applying the
criteria for perfect square we proved earlier, a and b are perfect squares.



3. (Hungerford 1.3.31) If p is a positive prime, prove that ,/p is irrational.

Solution. Let p > 0 be a prime and suppose that ,/p is rational, that is,
2
T2

By the FTA, we can write a = pipa---pr and b = qig2---q for some primes p; and ¢;. From
N = pb? = a? it follows that

P for some a,b € Z.

N =p(gids -~ ai) = pips - - pi-
Thus, we have achieved two prime decompositions for the integer N. The first N = p(q?q3 - - qlz) has

20+ 1 an odd number of primes in the decomposition while the second N = p2p3 - - ~pi has 2k an even
number of primes in the decomposition. This contradicts the FTA. Therefore, ,/p is not rational.

4. (Hungerford 1.3.33) Let p > 1. If 2?7 — 1 is prime, prove that p is prime. [Hint: Prove the
contrapositive: If p is composite, so is 2P — 1.]
Solution. Suppose p > 1 is composite, that is, p = ab for some a, b € Z neither equal to 0 or £1.
WLOG we can assume that a,b > 1, since p > 1 it is true that p = |al|b|.

By the law of exponents we have that 27 — 1 = 29 — 1 = (2%)® — 1. Applying Problem 1, we know
that 2¢ — 1 divides 2P — 1. Since a > 1, we have that 2 < 2% and 1 < 2* — 1. Since b > 1, we have that
24 < 29 50 that 2% — 1 < 2P — 1. Therefore, there exists a divisor 2¢ — 1|2P — 1 that is strictly between
1 and 2P — 1. We conclude that 2P — 1 is not prime.

5. (Hungerford 2.1.3) Every published book has a ten-digit ISBN-10 number that is usually of the form
T1 — ToX3X4 — T5TeL7T8Tg — T1g, where each 0 < z; < 9 is a single digit. Sometimes the last digit is
the letter X, and should be treated as if it were the number 10. The first 9 digits identify the book.
The last digit z19 is a check digit; it is chosen so that

1021 + 922 4+ 8x3 + Txy + 625 4+ Hxg + 47 + 328 + 209 + 10 =0 mod 11.

If an error is made when scanning or keying the ISBN number into a computer the left side of the
congruence will not be congruent to 0 modulo 11, and the number will be rejected as invalid. Which
of the following are apparently valid ISBN numbers?

(a) 3-540-90518-9  (b) 0-031-10559-5  (c) 0-385-49596-X.

Solution.
(a) 3-540-90518-9 is a valid ISBN-10 since
10-3+9-54+8-447-04+6-945-0+4-54+3-1+2-84+9=19-11=0 mod 11.
(b) 0-031-10559-5 is not a valid ISBN-10 since
10-0+9-04+8-347-146-14+5-04+4-5+3-5+2-94+5=95%0 mod 11.
(c) 0-385-49596-X is a valid ISBN-10 since
10-0+9-34+8-84+7-54+6-445-944-543-9+2-64+10=24-11=0 mod 11.
6. (Hungerford 2.1.8) Prove that every odd integer is congruent to 1 modulo 4 or 3 modulo 4.

Solution. Let n = 2k + 1 be odd. Then, by the division algorithm for k& when divided by 2 there exist
q,7 € Z such that k =2q¢+1r for 0 <r < 2.

Case 1. (r =0) Then, n = 2(2j) + 1 =45 + 1. Therefore, n — 1 = 45 so that n =1 mod 4.

Case 2. (r=1) Then, n =2(2j + 1) + 1 = 45 4+ 3. Therefore, n — 3 = 45 so that n =3 mod 4.

In both cases, n is congruent to 1 or 2 modulo 4.



7. (Hungerford 2.1.15) If the greatest common divisor (a,n) = 1, prove that there is an integer b € Z
such that ab =1 mod n.

Solution. Suppose that the ged (a,n) = 1. Then, Theorem 1.2 there are u, v € Z such that au+nv = 1.
Therefore, au — 1 = nv so that au =1 mod n.

8. (Hungerford 2.1.22)
(a) Give an example to show that the following statement is false: If ab = ac mod n and a # 0
mod n, then b = ¢ mod n.

(b) Prove that the statement in part (a) is true whenever the ged (a,n) = 1.

Solution.

(a) Let a=2 and n = 6. For b = 3 and ¢ = 6, we have that 2-3 =6 and 2-6 = 12. So that 2-3=0
mod 6 and 2-6 =0 mod 6. By transitivity of congruence, 2-3 =2-6 mod 6.
But, by Corollary 2.5 we know that 3 Z 6 mod 6.

(b) Suppose that (a,n) =1 and ab = ac mod n. Then, ab—ac = nk for some k € Z. Thus, nla(b—-c).
By Theorem 1.4, n|a(b — ¢) and (a,n) = 1 implies that n|(b — ¢). Therefore, b — ¢ = nj for some
j and thus, b = ¢ mod n.

9. (Hungerford 2.2.11 and 15) Solve the equation z + z + z = [0] in Zs. (State the properties of
modular arithmetic you are using in each step of your solution, see Theorem 2.7)
Then, simplify the expression ([a] + [b])? in Zs.

Solution. Let [a] € Zs where a € Z is any representative in the class [a]. Then, by the definition of
addition for congruence classes

[a] + [a] + [a] = [a+a] +[a] = [a+a + a] = [3a]

We have that 3¢ = 0 mod 3 for any a € Z and thus, by Theorem 2.3, [3a] = [0]. Therefore, all
elements of Z3 are solutions to x + z + z = [0].

Now, simplify ([a] + [6])? in Z3:

([a] + [81)* = ([a] + [B])(la] + [B])([a] + [0])°
= ([a] + [0])([alla] + [a][b] + [b][a] + [b][D]) (by distribution)
= ([a] + [0])([a?] + [2ab] + [b?]) (by multiplication of classes)
= ([a][a®] + [a][2ab] + [a][b?] + [b][a®] + [b][2ab] + [b][b?] (by distribution)
= [a®] + [2a%b] + [ab?] + [a®b] + [2ab%] + [b%] (by multiplication of classes)
= [a®] + [3a®b] + [3ab?] + [b7] (by addition of classes)

[a)® + [0] + [0] + [b]3 (by previous part of problem)

= [a]® + [b]°.

10. (Hungerford 2.2.16) Find all [a] € Zs for which the equation [a] - © = [1] has a solution.

Solution. The multiplication table for Zs is given by

~ o] (1 2] 3] [4]
[0] | (0] [o] [o] [0} [0]
[ap o np2hopr M
2] o] 21 [ [ 3]
Bl | (o] B8] 1) [4 [2]
4o M4 B2 [



11.

12.

From the multiplication table, every row besides [0] contains [1]. It follows that [1],[2], [3], [4] are have
solutions to the equation [a] - x = [1].

(Hungerford 2.3.2 and 6) Find all zero divisors in (a) Z7 and (b) Zo.

Next, prove that if n is composite then that there is at least one zero divisor in Z,.

Solution. Recall, a is a zero divisor if @ # 0 and ab = 0. Thus, to find all zero divisor we look at the
multiplication tables.

The multiplication table for Z; is given by,

- o] [ [2] (3] [4] [5] [6]
o] | (o] [o] [o] [0} [o] [0} [0]
Ao 0] 2 B8 [4 [ [6]
z,. Ao 2 [4fe {3 [5)
Bl | O B 6] [ [ [ [4]
4] | o) [4 0] 5] [2] [6] [3]
5] | (O] [51 [3) [1] [6] [4] [2]
(6] | (0] [6] [5] [4 8] [ []

[0] does not appear in the table out side of the row and column of [0]. Thus, there are no zero-divisors.

- o] [ 2] (8] [4 [5] [6] [7] [8
0] | [o] [0} [o] [0} [o] [0] f[o] [0] [0]
[ o 0] 2 8 [ [5 (6] [7] 8]
21| [of 2] {4 [6] [8 [ 3 [5] [7]
zo. B0 B [6] (0] 3 (6 [0 [3] [6]
[4] | o) 4 8 B (7 2 (6] [1] [5]
5| (o) [ (] (6] 2] 7] (3] (8] [4]
[6] | [o] [6] (3] [0] [6] [3] f[o] [6] 3]
(@ o [ 5 B [ 8 (6] [4 [2]
B [ [0 [8 [7 [6] [5I [4 B 2 []

Thus, there are two zero divisors in Zg, [3] and [6].

Next, suppose n is composite. Thus, there is a divisor a|n such that 1 < a < n and ak = n for some
k€Z and 1 < k < n It follows that [ak] = [0]. By multiplication of congruence classes, [ak] = [a][k].
Therefore, [a][k] = [0] and since 1 < k < n we have that [k] # [0]. We can conclude that [a] is a zero
divisor in Z,,.

(Hungerford 2.3.10) Prove that every nonzero element of Z,, is either a unit or a zero divisor, but
not both.

Solution. Let [a] be a unit in Z,, and suppose [a] is a zero divisor. Then, there exists [b], [¢] € Z,, such
that [a][b] = [1] = [b][a] and [a][c] = [0] where [c] # [0]. By substitution, it follows that

0] = [b-0] = [B][0]
([alle)) = (Bla))le]

[c

(=

[c
1

C

[
[
[
[

We have reached a contradiction, thus a cannot be both a unit and a zero-divisor.
Now let [a] € Z,, and a > 0 be a representative of the class [a]. Then, either (a,n) =1 or (a,n) =d > 1.
If (a,n) = 1 then by Theorem 2.10 [a] is unit.



If (a,n) =d > 1, we can write a = dk and n = dl for some k,l € Z. Moreover, since n > 0 we can
choose 0 < I < |n| so that [I] # [0]. It follows that al = dkl = kn so that [a][l] = [0] in Z,, with [I] # [0].
We conclude that [a] is a zero divisor.

13. (Hungerford 2.3.17) Prove that the product of two units in Z,, is also a unit.

Solution. Let [a],[b] € Z, be units. Then, there are [¢], [d] € Z, such that [a][c] = [1] = [c][a] and
[b][d] = [1] = [d][b]. We check that [ed] is an inverse for [ab]

[ab][cd] = [abed] = [achd)]

= [ac][bd]
= ([a][e))([b][d])
=[] = [1]
and
[ed][ab] = [cdab] = [abed) = [ab][ed] = [1].
Therefore, [a][b] = [ab] is a unit in Z,.

14. (EC—worth .5% of final grade) Find all elements of the set [2]7 N [3]5.



