
MTH 310: HW 2

Instructor: Matthew Cha

Due: May 30, 2018

1. (Hungerford 1.3.8)

(a) Verify that x− 1 is a factor of xn − 1.

(b) If n is a positive integer, prove that the prime factorization of 22n3n− 1 includes 11 as one of the
prime factors. [Hint : (22n3n = (223)n).]

Solution.

(a) Consider the following product

(x− 1)(xn−1 + xn−2 + . . . + x + 1) = (x− 1)

( n−1∑
i=0

xi

)
=

n−1∑
i=0

(xi+1 − xi)

= xn − 1,

where the last equality follows since the sum is a telescoping sum. Thus, x−1 is a factor of xn−1.

(b) Applying the law of exponents gives

22n3n − 1 = (223)n − 1 = 12n − 1.

From part (a) 11 is a factor of 12n − 1.

2. (Hungerford 1.3.21) If c2 = ab, the gcd of (a, b) = 1 and 0 ≤ a, b prove that a and b are perfect
squares.

Solution. Note that we must have that a, b ≥ 0 for them to be perfect squares, that is, a = n2 and
b = m2 for some m,n ∈ Z.

First, we prove that a is a perfect square if and only if a = p21p
2
2 · · · p2k for some primes p1, . . . pk.

Suppose that a = n2 is a perfect square. Then, by the FTA we can write a prime factorization for
n = p1p2 · · · pk for some primes p1, . . . pk. Thus, a = p21p

2
2 · · · p2k.

By the FTA, we can write c = p1p2 · · · pk for some primes p1, . . . , pk and WLOG assume the primes
are positive. We have that

c2 = p21p
2
2 · · · p2k = ab.

The FTA and the equation above imply that the prime decompositions for a and b must only consist
of the prime p1, p2, . . . , pk. Thus, it follows that

a = pn1
1 pn2

2 · · · p
nk

k where nj = 0, 1, or 2 ∀j
b = p2−n1

1 p2−n2
2 · · · p2−nk

k .

Suppose nj = 1. Then, pj |a and pj |b is a common divisor of a and b and pj > 1 since pj is a prime.
This contradicts the assumption that gcd of (a, b) = 1. Thus, nj = 0 or 2. Therefore, by applying the
criteria for perfect square we proved earlier, a and b are perfect squares.
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3. (Hungerford 1.3.31) If p is a positive prime, prove that
√
p is irrational.

Solution. Let p > 0 be a prime and suppose that
√
p is rational, that is,

p =
a2

b2
for some a, b ∈ Z.

By the FTA, we can write a = p1p2 · · · pk and b = q1q2 · · · ql for some primes pi and qj . From
N = pb2 = a2 it follows that

N = p(q21q
2
2 · · · q2l ) = p21p

2
2 · · · p2k.

Thus, we have achieved two prime decompositions for the integer N . The first N = p(q21q
2
2 · · · q2l ) has

2l + 1 an odd number of primes in the decomposition while the second N = p21p
2
2 · · · p2k has 2k an even

number of primes in the decomposition. This contradicts the FTA. Therefore,
√
p is not rational.

4. (Hungerford 1.3.33) Let p > 1. If 2p − 1 is prime, prove that p is prime. [Hint : Prove the
contrapositive: If p is composite, so is 2p − 1.]

Solution. Suppose p > 1 is composite, that is, p = ab for some a, b ∈ Z neither equal to 0 or ±1.

WLOG we can assume that a, b > 1, since p > 1 it is true that p = |a||b|.
By the law of exponents we have that 2p − 1 = 2ab − 1 = (2a)b − 1. Applying Problem 1, we know
that 2a − 1 divides 2p − 1. Since a > 1, we have that 2 < 2a and 1 < 2a − 1. Since b > 1, we have that
2a < 2ab so that 2a− 1 < 2p− 1. Therefore, there exists a divisor 2a− 1|2p− 1 that is strictly between
1 and 2p − 1. We conclude that 2p − 1 is not prime.

5. (Hungerford 2.1.3) Every published book has a ten-digit ISBN-10 number that is usually of the form
x1 − x2x3x4 − x5x6x7x8x9 − x10, where each 0 ≤ xi ≤ 9 is a single digit. Sometimes the last digit is
the letter X, and should be treated as if it were the number 10. The first 9 digits identify the book.
The last digit x10 is a check digit ; it is chosen so that

10x1 + 9x2 + 8x3 + 7x4 + 6x5 + 5x6 + 4x7 + 3x8 + 2x9 + x10 ≡ 0 mod 11.

If an error is made when scanning or keying the ISBN number into a computer the left side of the
congruence will not be congruent to 0 modulo 11, and the number will be rejected as invalid. Which
of the following are apparently valid ISBN numbers?

(a) 3–540–90518–9 (b) 0–031–10559–5 (c) 0–385–49596–X.

Solution.

(a) 3–540–90518–9 is a valid ISBN-10 since

10 · 3 + 9 · 5 + 8 · 4 + 7 · 0 + 6 · 9 + 5 · 0 + 4 · 5 + 3 · 1 + 2 · 8 + 9 = 19 · 11 ≡ 0 mod 11.

(b) 0–031–10559–5 is not a valid ISBN-10 since

10 · 0 + 9 · 0 + 8 · 3 + 7 · 1 + 6 · 1 + 5 · 0 + 4 · 5 + 3 · 5 + 2 · 9 + 5 = 95 6≡ 0 mod 11.

(c) 0–385–49596–X is a valid ISBN-10 since

10 · 0 + 9 · 3 + 8 · 8 + 7 · 5 + 6 · 4 + 5 · 9 + 4 · 5 + 3 · 9 + 2 · 6 + 10 = 24 · 11 ≡ 0 mod 11.

6. (Hungerford 2.1.8) Prove that every odd integer is congruent to 1 modulo 4 or 3 modulo 4.

Solution. Let n = 2k+ 1 be odd. Then, by the division algorithm for k when divided by 2 there exist
q, r ∈ Z such that k = 2q + r for 0 ≤ r < 2.

Case 1. (r = 0) Then, n = 2(2j) + 1 = 4j + 1. Therefore, n− 1 = 4j so that n ≡ 1 mod 4.

Case 2. (r = 1 ) Then, n = 2(2j + 1) + 1 = 4j + 3. Therefore, n− 3 = 4j so that n ≡ 3 mod 4.

In both cases, n is congruent to 1 or 2 modulo 4.
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7. (Hungerford 2.1.15) If the greatest common divisor (a, n) = 1, prove that there is an integer b ∈ Z
such that ab ≡ 1 mod n.

Solution. Suppose that the gcd (a, n) = 1. Then, Theorem 1.2 there are u, v ∈ Z such that au+nv = 1.
Therefore, au− 1 = nv so that au ≡ 1 mod n.

8. (Hungerford 2.1.22)

(a) Give an example to show that the following statement is false: If ab ≡ ac mod n and a 6≡ 0
mod n, then b ≡ c mod n.

(b) Prove that the statement in part (a) is true whenever the gcd (a, n) = 1.

Solution.

(a) Let a = 2 and n = 6. For b = 3 and c = 6, we have that 2 · 3 = 6 and 2 · 6 = 12. So that 2 · 3 ≡ 0
mod 6 and 2 · 6 ≡ 0 mod 6. By transitivity of congruence, 2 · 3 ≡ 2 · 6 mod 6.

But, by Corollary 2.5 we know that 3 6≡ 6 mod 6.

(b) Suppose that (a, n) = 1 and ab ≡ ac mod n. Then, ab−ac = nk for some k ∈ Z. Thus, n|a(b−c).
By Theorem 1.4, n|a(b− c) and (a, n) = 1 implies that n|(b− c). Therefore, b− c = nj for some
j and thus, b ≡ c mod n.

9. (Hungerford 2.2.11 and 15) Solve the equation x + x + x = [0] in Z3. (State the properties of
modular arithmetic you are using in each step of your solution, see Theorem 2.7)

Then, simplify the expression ([a] + [b])3 in Z3.

Solution. Let [a] ∈ Z3 where a ∈ Z is any representative in the class [a]. Then, by the definition of
addition for congruence classes

[a] + [a] + [a] = [a + a] + [a] = [a + a + a] = [3a].

We have that 3a ≡ 0 mod 3 for any a ∈ Z and thus, by Theorem 2.3, [3a] = [0]. Therefore, all
elements of Z3 are solutions to x + x + x = [0].

Now, simplify ([a] + [b])3 in Z3:

([a] + [b])3 = ([a] + [b])([a] + [b])([a] + [b])3

= ([a] + [b])([a][a] + [a][b] + [b][a] + [b][b]) (by distribution)

= ([a] + [b])([a2] + [2ab] + [b2]) (by multiplication of classes)

= ([a][a2] + [a][2ab] + [a][b2] + [b][a2] + [b][2ab] + [b][b2] (by distribution)

= [a3] + [2a2b] + [ab2] + [a2b] + [2ab2] + [b3] (by multiplication of classes)

= [a3] + [3a2b] + [3ab2] + [b3] (by addition of classes)

= [a]3 + [0] + [0] + [b]3 (by previous part of problem)

= [a]3 + [b]3.

10. (Hungerford 2.2.16) Find all [a] ∈ Z5 for which the equation [a] · x = [1] has a solution.

Solution. The multiplication table for Z5 is given by

· [0] [1] [2] [3] [4]
[0] [0] [0] [0] [0] [0]
[1] [0] [1] [2] [3] [4]
[2] [0] [2] [4] [1] [3]
[3] [0] [3] [1] [4] [2]
[4] [0] [4] [3] [2] [1]
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From the multiplication table, every row besides [0] contains [1]. It follows that [1], [2], [3], [4] are have
solutions to the equation [a] · x = [1].

11. (Hungerford 2.3.2 and 6) Find all zero divisors in (a) Z7 and (b) Z9.

Next, prove that if n is composite then that there is at least one zero divisor in Zn.

Solution. Recall, a is a zero divisor if a 6= 0 and ab = 0. Thus, to find all zero divisor we look at the
multiplication tables.

The multiplication table for Z7 is given by,

Z7 :

· [0] [1] [2] [3] [4] [5] [6]
[0] [0] [0] [0] [0] [0] [0] [0]
[1] [0] [1] [2] [3] [4] [5] [6]
[2] [0] [2] [4] [6] [1] [3] [5]
[3] [0] [3] [6] [2] [5] [1] [4]
[4] [0] [4] [1] [5] [2] [6] [3]
[5] [0] [5] [3] [1] [6] [4] [2]
[6] [0] [6] [5] [4] [3] [2] [1]

[0] does not appear in the table out side of the row and column of [0]. Thus, there are no zero-divisors.

Z9 :

· [0] [1] [2] [3] [4] [5] [6] [7] [8]
[0] [0] [0] [0] [0] [0] [0] [0] [0] [0]
[1] [0] [1] [2] [3] [4] [5] [6] [7] [8]
[2] [0] [2] [4] [6] [8] [1] [3] [5] [7]
[3] [0] [3] [6] [0] [3] [6] [0] [3] [6]
[4] [0] [4] [8] [3] [7] [2] [6] [1] [5]
[5] [0] [5] [1] [6] [2] [7] [3] [8] [4]
[6] [0] [6] [3] [0] [6] [3] [0] [6] [3]
[7] [0] [7] [5] [3] [1] [8] [6] [4] [2]
[8] [0] [8] [7] [6] [5] [4] [3] [2] [1]

Thus, there are two zero divisors in Z9, [3] and [6].

Next, suppose n is composite. Thus, there is a divisor a|n such that 1 < a < n and ak = n for some
k ∈ Z and 1 < k < n It follows that [ak] = [0]. By multiplication of congruence classes, [ak] = [a][k].
Therefore, [a][k] = [0] and since 1 < k < n we have that [k] 6= [0]. We can conclude that [a] is a zero
divisor in Zn.

12. (Hungerford 2.3.10) Prove that every nonzero element of Zn is either a unit or a zero divisor, but
not both.

Solution. Let [a] be a unit in Zn and suppose [a] is a zero divisor. Then, there exists [b], [c] ∈ Zn such
that [a][b] = [1] = [b][a] and [a][c] = [0] where [c] 6= [0]. By substitution, it follows that

[0] = [b · 0] = [b][0]

= [b]([a][c]) = ([b][a])[c]

= [1][c]

= [c].

We have reached a contradiction, thus a cannot be both a unit and a zero-divisor.

Now let [a] ∈ Zn and a > 0 be a representative of the class [a]. Then, either (a, n) = 1 or (a, n) = d > 1.

If (a, n) = 1 then by Theorem 2.10 [a] is unit.
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If (a, n) = d > 1, we can write a = dk and n = dl for some k, l ∈ Z. Moreover, since n > 0 we can
choose 0 < l < |n| so that [l] 6= [0]. It follows that al = dkl = kn so that [a][l] = [0] in Zn with [l] 6= [0].
We conclude that [a] is a zero divisor.

13. (Hungerford 2.3.17) Prove that the product of two units in Zn is also a unit.

Solution. Let [a], [b] ∈ Zn be units. Then, there are [c], [d] ∈ Zn such that [a][c] = [1] = [c][a] and
[b][d] = [1] = [d][b]. We check that [cd] is an inverse for [ab]

[ab][cd] = [abcd] = [acbd]

= [ac][bd]

= ([a][c])([b][d])

= [1][1] = [1]

and
[cd][ab] = [cdab] = [abcd] = [ab][cd] = [1].

Therefore, [a][b] = [ab] is a unit in Zn.

14. (EC–worth .5% of final grade) Find all elements of the set [2]7 ∩ [3]5.
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