MTH 310: HW 2

Instructor: Matthew Cha

Due: May 30, 2018

1. (Hungerford 1.3.8)

- (a) Verify that x 1 is a factor of $x^n 1$.
- (b) If n is a positive integer, prove that the prime factorization of $2^{2n}3^n 1$ includes 11 as one of the prime factors. [*Hint*: $(2^{2n}3^n = (2^23)^n)$.]

Solution.

(a) Consider the following product

$$(x-1)(x^{n-1}+x^{n-2}+\ldots+x+1) = (x-1)\left(\sum_{i=0}^{n-1} x^i\right) = \sum_{i=0}^{n-1} (x^{i+1}-x^i)$$
$$= x^n - 1,$$

where the last equality follows since the sum is a telescoping sum. Thus, x - 1 is a factor of $x^n - 1$.

(b) Applying the law of exponents gives

$$2^{2n}3^n - 1 = (2^23)^n - 1 = 12^n - 1.$$

From part (a) 11 is a factor of $12^n - 1$.

2. (Hungerford 1.3.21) If $c^2 = ab$, the gcd of (a, b) = 1 and $0 \le a, b$ prove that a and b are perfect squares.

Solution. Note that we must have that $a, b \ge 0$ for them to be perfect squares, that is, $a = n^2$ and $b = m^2$ for some $m, n \in \mathbb{Z}$.

First, we prove that a is a perfect square if and only if $a = p_1^2 p_2^2 \cdots p_k^2$ for some primes $p_1, \ldots p_k$. Suppose that $a = n^2$ is a perfect square. Then, by the FTA we can write a prime factorization for $n = p_1 p_2 \cdots p_k$ for some primes $p_1, \ldots p_k$. Thus, $a = p_1^2 p_2^2 \cdots p_k^2$.

By the FTA, we can write $c = p_1 p_2 \cdots p_k$ for some primes p_1, \ldots, p_k and WLOG assume the primes are positive. We have that

$$e^2 = p_1^2 p_2^2 \cdots p_k^2 = ab.$$

The FTA and the equation above imply that the prime decompositions for a and b must only consist of the prime p_1, p_2, \ldots, p_k . Thus, it follows that

$$a = p_1^{n_1} p_2^{n_2} \cdots p_k^{n_k} \quad \text{where} \quad n_j = 0, 1, \text{ or } 2 \quad \forall j$$

$$b = p_1^{2-n_1} p_2^{2-n_2} \cdots p_k^{2-n_k}.$$

Suppose $n_j = 1$. Then, $p_j|a$ and $p_j|b$ is a common divisor of a and b and $p_j > 1$ since p_j is a prime. This contradicts the assumption that gcd of (a, b) = 1. Thus, $n_j = 0$ or 2. Therefore, by applying the criteria for perfect square we proved earlier, a and b are perfect squares.

3. (Hungerford 1.3.31) If p is a positive prime, prove that \sqrt{p} is irrational.

Solution. Let p > 0 be a prime and suppose that \sqrt{p} is rational, that is,

$$p = \frac{a^2}{b^2}$$
 for some $a, b \in \mathbb{Z}$.

By the FTA, we can write $a = p_1 p_2 \cdots p_k$ and $b = q_1 q_2 \cdots q_l$ for some primes p_i and q_j . From $N = pb^2 = a^2$ it follows that

$$N = p(q_1^2 q_2^2 \cdots q_l^2) = p_1^2 p_2^2 \cdots p_k^2$$

Thus, we have achieved two prime decompositions for the integer N. The first $N = p(q_1^2 q_2^2 \cdots q_l^2)$ has 2l + 1 an odd number of primes in the decomposition while the second $N = p_1^2 p_2^2 \cdots p_k^2$ has 2k an even number of primes in the decomposition. This contradicts the FTA. Therefore, \sqrt{p} is not rational.

4. (Hungerford 1.3.33) Let p > 1. If $2^p - 1$ is prime, prove that p is prime. [*Hint*: Prove the contrapositive: If p is composite, so is $2^p - 1$.]

Solution. Suppose p > 1 is composite, that is, p = ab for some $a, b \in \mathbb{Z}$ neither equal to 0 or ± 1 .

WLOG we can assume that a, b > 1, since p > 1 it is true that p = |a||b|.

By the law of exponents we have that $2^p - 1 = 2^{ab} - 1 = (2^a)^b - 1$. Applying Problem 1, we know that $2^a - 1$ divides $2^p - 1$. Since a > 1, we have that $2 < 2^a$ and $1 < 2^a - 1$. Since b > 1, we have that $2^a < 2^{ab}$ so that $2^a - 1 < 2^p - 1$. Therefore, there exists a divisor $2^a - 1|2^p - 1$ that is strictly between 1 and $2^p - 1$. We conclude that $2^p - 1$ is not prime.

5. (Hungerford 2.1.3) Every published book has a ten-digit ISBN-10 number that is usually of the form $x_1 - x_2x_3x_4 - x_5x_6x_7x_8x_9 - x_{10}$, where each $0 \le x_i \le 9$ is a single digit. Sometimes the last digit is the letter X, and should be treated as if it were the number 10. The first 9 digits identify the book. The last digit x_{10} is a *check digit*; it is chosen so that

$$10x_1 + 9x_2 + 8x_3 + 7x_4 + 6x_5 + 5x_6 + 4x_7 + 3x_8 + 2x_9 + x_{10} \equiv 0 \mod 11$$

If an error is made when scanning or keying the ISBN number into a computer the left side of the congruence will not be congruent to 0 modulo 11, and the number will be rejected as invalid. Which of the following are apparently valid ISBN numbers?

(a) 3-540-90518-9 (b) 0-031-10559-5 (c) 0-385-49596-X.

Solution.

(a) 3-540-90518-9 is a valid ISBN-10 since

 $10 \cdot 3 + 9 \cdot 5 + 8 \cdot 4 + 7 \cdot 0 + 6 \cdot 9 + 5 \cdot 0 + 4 \cdot 5 + 3 \cdot 1 + 2 \cdot 8 + 9 = 19 \cdot 11 \equiv 0 \mod 11.$

(b) 0-031-10559-5 is not a valid ISBN-10 since

 $10 \cdot 0 + 9 \cdot 0 + 8 \cdot 3 + 7 \cdot 1 + 6 \cdot 1 + 5 \cdot 0 + 4 \cdot 5 + 3 \cdot 5 + 2 \cdot 9 + 5 = 95 \not\equiv 0 \mod 11.$

(c) 0-385-49596-X is a valid ISBN-10 since

 $10 \cdot 0 + 9 \cdot 3 + 8 \cdot 8 + 7 \cdot 5 + 6 \cdot 4 + 5 \cdot 9 + 4 \cdot 5 + 3 \cdot 9 + 2 \cdot 6 + 10 = 24 \cdot 11 \equiv 0 \mod 11.$

6. (Hungerford 2.1.8) Prove that every odd integer is congruent to 1 modulo 4 or 3 modulo 4.

Solution. Let n = 2k + 1 be odd. Then, by the division algorithm for k when divided by 2 there exist $q, r \in \mathbb{Z}$ such that k = 2q + r for $0 \le r < 2$.

Case 1. (r=0) Then, n=2(2j)+1=4j+1. Therefore, n-1=4j so that $n \equiv 1 \mod 4$.

Case 2. (r = 1) Then, n = 2(2j + 1) + 1 = 4j + 3. Therefore, n - 3 = 4j so that $n \equiv 3 \mod 4$. In both cases, n is congruent to 1 or 2 modulo 4. 7. (Hungerford 2.1.15) If the greatest common divisor (a, n) = 1, prove that there is an integer $b \in \mathbb{Z}$ such that $ab \equiv 1 \mod n$.

Solution. Suppose that the gcd (a, n) = 1. Then, Theorem 1.2 there are $u, v \in \mathbb{Z}$ such that au+nv = 1. Therefore, au - 1 = nv so that $au \equiv 1 \mod n$.

8. (Hungerford 2.1.22)

- (a) Give an example to show that the following statement is false: If $ab \equiv ac \mod n$ and $a \not\equiv 0 \mod n$, then $b \equiv c \mod n$.
- (b) Prove that the statement in part (a) is true whenever the gcd (a, n) = 1.

Solution.

- (a) Let a = 2 and n = 6. For b = 3 and c = 6, we have that $2 \cdot 3 = 6$ and $2 \cdot 6 = 12$. So that $2 \cdot 3 \equiv 0 \mod 6$ and $2 \cdot 6 \equiv 0 \mod 6$. By transitivity of congruence, $2 \cdot 3 \equiv 2 \cdot 6 \mod 6$. But, by Corollary 2.5 we know that $3 \not\equiv 6 \mod 6$.
- (b) Suppose that (a, n) = 1 and $ab \equiv ac \mod n$. Then, ab ac = nk for some $k \in \mathbb{Z}$. Thus, n|a(b-c). By Theorem 1.4, n|a(b-c) and (a, n) = 1 implies that n|(b-c). Therefore, b - c = nj for some j and thus, $b \equiv c \mod n$.
- 9. (Hungerford 2.2.11 and 15) Solve the equation x + x + x = [0] in Z₃. (State the properties of modular arithmetic you are using in each step of your solution, see Theorem 2.7)
 Then, simplify the expression ([a] + [b])³ in Z₃.

Solution. Let $[a] \in \mathbb{Z}_3$ where $a \in \mathbb{Z}$ is any representative in the class [a]. Then, by the definition of addition for congruence classes

$$[a] + [a] + [a] = [a + a] + [a] = [a + a + a] = [3a].$$

We have that $3a \equiv 0 \mod 3$ for any $a \in \mathbb{Z}$ and thus, by Theorem 2.3, [3a] = [0]. Therefore, all elements of \mathbb{Z}_3 are solutions to x + x + x = [0].

Now, simplify $([a] + [b])^3$ in \mathbb{Z}_3 :

$$\begin{split} ([a] + [b])^3 &= ([a] + [b])([a] + [b])([a] + [b])^3 \\ &= ([a] + [b])([a][a] + [a][b] + [b][a] + [b][b]) & (by \text{ distribution}) \\ &= ([a] + [b])([a^2] + [2ab] + [b^2]) & (by \text{ multiplication of classes}) \\ &= ([a][a^2] + [a][2ab] + [a][b^2] + [b][a^2] + [b][2ab] + [b][b^2] & (by \text{ distribution}) \\ &= [a^3] + [2a^2b] + [ab^2] + [a^2b] + [2ab^2] + [b^3] & (by \text{ multiplication of classes}) \\ &= [a^3] + [3a^2b] + [3ab^2] + [b^3] & (by \text{ addition of classes}) \\ &= [a]^3 + [0] + [0] + [b]^3 & (by \text{ previous part of problem}) \\ &= [a]^3 + [b]^3. \end{split}$$

10. (Hungerford 2.2.16) Find all $[a] \in \mathbb{Z}_5$ for which the equation $[a] \cdot x = [1]$ has a solution. Solution. The multiplication table for \mathbb{Z}_5 is given by

	[0]	[1]	[2]	[3]	[4]
[0]	[0]	[0]	[0]	[0]	[0]
[1]	[0]	[1]	[2]	[3]	[4]
[2]	[0]	[2]	[4]	[1]	[3]
[3]	[0]	[3]	[1]	[4]	[2]
[4]	[0]	[4]	[3]	[2]	[1]

From the multiplication table, every row besides [0] contains [1]. It follows that [1], [2], [3], [4] are have solutions to the equation $[a] \cdot x = [1]$.

11. (Hungerford 2.3.2 and 6) Find all zero divisors in (a) \mathbb{Z}_7 and (b) \mathbb{Z}_9 .

Next, prove that if n is composite then that there is at least one zero divisor in \mathbb{Z}_n .

Solution. Recall, a is a zero divisor if $a \neq 0$ and ab = 0. Thus, to find all zero divisor we look at the multiplication tables.

The multiplication table for \mathbb{Z}_7 is given by,

	•	[0]	[1]	[2]	[3]	[4]	[5]	[6]
\mathbb{Z}_7 :	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]
	[1]	[0]	[1]	[2]	[3]	[4]	[5]	[6]
	[2]	[0]	[2]	[4]	[6]	[1]	[3]	[5]
	[3]	[0]	[3]	[6]	[2]	[5]	[1]	[4]
	[4]	[0]	[4]	[1]	[5]	[2]	[6]	[3]
	[5]	[0]	[5]	[3]	[1]	[6]	[4]	[2]
	[6]	[0]	[6]	[5]	[4]	[3]	[2]	[1]

[0] does not appear in the table out side of the row and column of [0]. Thus, there are no zero-divisors.

	•	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
\mathbb{Z}_9 :	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]
	[1]	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
	[2]	[0]	[2]	[4]	[6]	[8]	[1]	[3]	[5]	[7]
	[3]	[0]	[3]	[6]	[0]	[3]	[6]	[0]	[3]	[6]
	[4]	[0]	[4]	[8]	[3]	[7]	[2]	[6]	[1]	[5]
	[5]	[0]	[5]	[1]	[6]	[2]	[7]	[3]	[8]	[4]
	[6]	[0]	[6]	[3]	[0]	[6]	[3]	[0]	[6]	[3]
	[7]	[0]	[7]	[5]	[3]	[1]	[8]	[6]	[4]	[2]
	[8]	[0]	[8]	[7]	[6]	[5]	[4]	[3]	[2]	[1]

Thus, there are two zero divisors in \mathbb{Z}_9 , [3] and [6].

Next, suppose n is composite. Thus, there is a divisor a|n such that 1 < a < n and ak = n for some $k \in \mathbb{Z}$ and 1 < k < n It follows that [ak] = [0]. By multiplication of congruence classes, [ak] = [a][k]. Therefore, [a][k] = [0] and since 1 < k < n we have that $[k] \neq [0]$. We can conclude that [a] is a zero divisor in \mathbb{Z}_n .

12. (Hungerford 2.3.10) Prove that every nonzero element of \mathbb{Z}_n is either a unit or a zero divisor, but not both.

Solution. Let [a] be a unit in \mathbb{Z}_n and suppose [a] is a zero divisor. Then, there exists $[b], [c] \in \mathbb{Z}_n$ such that [a][b] = [1] = [b][a] and [a][c] = [0] where $[c] \neq [0]$. By substitution, it follows that

$$\begin{split} [0] &= [b \cdot 0] = [b][0] \\ &= [b]([a][c]) = ([b][a])[c] \\ &= [1][c] \\ &= [c]. \end{split}$$

We have reached a contradiction, thus a cannot be both a unit and a zero-divisor.

Now let $[a] \in \mathbb{Z}_n$ and a > 0 be a representative of the class [a]. Then, either (a, n) = 1 or (a, n) = d > 1. If (a, n) = 1 then by Theorem 2.10 [a] is unit. If (a, n) = d > 1, we can write a = dk and n = dl for some $k, l \in \mathbb{Z}$. Moreover, since n > 0 we can choose 0 < l < |n| so that $[l] \neq [0]$. It follows that al = dkl = kn so that [a][l] = [0] in \mathbb{Z}_n with $[l] \neq [0]$. We conclude that [a] is a zero divisor.

13. (Hungerford 2.3.17) Prove that the product of two units in \mathbb{Z}_n is also a unit.

Solution. Let $[a], [b] \in \mathbb{Z}_n$ be units. Then, there are $[c], [d] \in \mathbb{Z}_n$ such that [a][c] = [1] = [c][a] and [b][d] = [1] = [d][b]. We check that [cd] is an inverse for [ab]

$$[ab][cd] = [abcd] = [acbd]$$

= [ac][bd]
= ([a][c])([b][d])
= [1][1] = [1]

and

$$[cd][ab] = [cdab] = [abcd] = [ab][cd] = [1].$$

Therefore, [a][b] = [ab] is a unit in \mathbb{Z}_n .

14. (EC-worth .5% of final grade) Find all elements of the set $[2]_7 \cap [3]_5$.