MTH 310: HW 2

Instructor: Matthew Cha

Due: May 30, 2018

1. (Hungerford 1.3.8)

(a) Verify that $x-1$ is a factor of $x^{n}-1$.
(b) If n is a positive integer, prove that the prime factorization of $2^{2 n} 3^{n}-1$ includes 11 as one of the prime factors. [Hint: $\left(2^{2 n} 3^{n}=\left(2^{2} 3\right)^{n}\right)$.]
2. (Hungerford 1.3.21) If $c^{2}=a b$ and $(a, b)=1$, prove that a and b are perfect squares.
3. (Hungerford 1.3.31) If p is a positive prime, prove that \sqrt{p} is irrational.
4. (Hungerford 1.3.33) Let $p>1$. If $2^{p}-1$ is prime, prove that p is prime. [Hint: Prove the contrapositive: If p is composite, so is $2^{p}-1$.]
5. (Hungerford 2.1.3) Every published book has a ten-digit ISBN-10 number that is usually of the form $x_{1}-x_{2} x_{3} x_{4}-x_{5} x_{6} x_{7} x_{8} x_{9}-x_{10}$, where each $0 \leq x_{i} \leq 9$ is a single digit. Sometimes the last digit is the letter X, and should be treated as if it were the number 10. The first 9 digits identify the book. The last digit x_{10} is a check digit; it is chosen so that

$$
10 x_{1}+9 x_{2}+8 x_{3}+7 x_{4}+6 x_{5}+5 x_{6}+4 x_{7}+3 x_{8}+2 x_{9}+x_{10} \equiv 0 \quad \bmod 11 .
$$

If an error is made when scanning or keying the ISBN number into a computer the left side of the congruence will not be congruent to 0 modulo 11 , and the number will be rejected as invalid. Which of the following are apparently valid ISBN numbers?
(a) 3-540-90518-9
(b) 0-031-10559-5
(c) 0-385-49596-X.
6. (Hungerford 2.1.8) Prove that every odd integer is congruent to 1 modulo 4 or 3 modulo 4.
7. (Hungerford 2.1.15) If the greatest common divisor $(a, n)=1$, prove that there is an integer $b \in \mathbb{Z}$ such that $a b \equiv 1 \bmod n$.
8. (Hungerford 2.1.22)
(a) Give an example to show that the following statement is false: If $a b \equiv a c \bmod n$ and $a \not \equiv 0$ $\bmod n$, then $b \equiv c \bmod n$.
(b) Prove that the statement in part (a) is true whenever the $\operatorname{gcd}(a, n)=1$.
9. (Hungerford 2.2.11 and 15) Solve the equation $x+x+x=[0]$ in \mathbb{Z}_{3}. (State the properties of modular arithmetic you are using in each step of your solution, see Theorem 2.7)
Then, simplify the expression $([a]+[b])^{3}$ in \mathbb{Z}_{3}.
10. (Hungerford 2.2.16) Find all $[a] \in \mathbb{Z}_{5}$ for which the equation $[a] \cdot x=[1]$ has a solution.
11. (Hungerford 2.3.2 and 6) Find all zero divisors in (a) \mathbb{Z}_{7} and (b) \mathbb{Z}_{9}.

Next, prove that if n is composite then that there is at least one zero divisor in \mathbb{Z}_{n}.
12. (Hungerford 2.3.10) Prove that every nonzero element of \mathbb{Z}_{n} is either a unit or a zero divisor, but not both.
13. (Hungerford 2.3.17) Prove that the product of two units in \mathbb{Z}_{n} is also a unit.
14. (EC-worth $\mathbf{5 \%}$ of final grade) Find all elements of the set $[2]_{7} \cap[3]_{5}$.

