MTH 310: HW 1 - Solutions

Instructor: Matthew Cha

Due: May 23, 2018

Problems from Hungerford's book (3rd ed.) are labeled by Hungerford chpt.sec. \#.

1. (Hungerford 1.1.2) Find the quotient q and remainder r when a is divided by b.
(a) $a=-51 ; b=6$
(b) $a=302 ; b=19$
(c) $a=2000 ; b=17$

Solution.

Recall that when a is divided by b the quotient and remainder are the unique integers that satisfy $a=b q+r$ where $0 \leq r<b$.
(a) $-51=6(-9)+3$ so $q=-9$ and $r=3$.
(b) $302=19(15)+17$ so $q=15$ and $r=17$.
(c) $2000=17 * 117+11$ so $q=117$ and $r=11$.
2. (Hungerford 1.1.7) Use the Division Algorithm to prove that the square of any integer a is either of the form $3 k$ or of the form $3 k+1$ for some integer k.

Solution.

Let $a \in \mathbb{Z}$. By the Division Algorithm(DA), there exist unique $q, r \in \mathbb{Z}$ such that $a=3 q+r$ where $0 \leq r<3$. Thus, the possible values for the remainder r are 0,1 and 2. Let's treat each case separately. (We want to show that a^{2} when divided by 3 has a remainder of 0 or 1.)
Case 1: $(r=0)$ We have that $a^{2}=(3 q)(3 q)=3\left(3 q^{2}\right)$. So a^{2} is of the form $3 k$.
Case 2: $(r=1) a^{2}=(3 q+1)(3 q+1)=(3 q)^{2}+2(3 q)+1=3\left(3 q^{2}+2 q\right)+1$. So a^{2} is of the form $3 k+1$.
Case 3: $(r=2) a^{2}=(3 q+2)(3 q+2)=(3 q)^{2}+4(3 q)+4=3\left(3 q^{2}+4 q+1\right)+1$. So a^{2} is of the form $3 k+1$.
Therefore, a^{2} is of the form $3 k$ or $3 k+1$.
3. (Hungerford 1.1.10) Let n be a positive integer. Prove that a and c leave the same remainder when divided by n if and only if $a-c=n k$ for some integer k.

Solution.

(\Longrightarrow) Suppose a and c leave the same remainder when divided by n. Then there exists $q_{1}, q_{2}, r \in \mathbb{Z}$ such that

$$
\begin{aligned}
a & =n q_{1}+r \\
c & =n q_{2}+r
\end{aligned} \quad 0 \leq r<n .
$$

Subtracting the second equation from the first we get

$$
a-c=n\left(q_{1}-q_{2}\right)+(r-r)=n\left(q_{1}-q_{2}\right)
$$

(\Longleftarrow) Suppose $a-c=n k$ for some $k \in \mathbb{Z}$. By uniqueness of the remainder in the DA, we have that $a-c$ when divided by n leaves a unique remainder $r=0$.
Now, apply the DA for a and c, respectively, when divided by n. There exist unique $q_{1}, q_{2}, r_{1}, r_{2} \in \mathbb{Z}$ such that

$$
\begin{array}{ll}
a=n q_{1}+r_{1} & 0 \leq r_{1}<n \\
c=n q_{2}+r_{2} & 0 \leq r_{2}<n
\end{array}
$$

(We want to show that $r_{1}=r_{2}$.) Without loss of generality (WLOG) suppose that $r_{1} \geq r_{2}$, (otherwise just relabel). Subtracting the second equation from the first we get

$$
a-c=n\left(q_{1}-q_{2}\right)+\left(r_{1}-r_{2}\right)
$$

where $0 \leq r_{1}-r_{2} \leq r_{1}<n$. By assumption, we know that $a-c$ when divided by n must leave a unique remainder $r=0$. It follows that $r_{1}-r_{2}=0$, and therefore, $r_{1}=r_{2}$.
4. (Hungerford 1.2.9) If $a \mid c$ and $b \mid c$, must $a b \mid c$? Justify your answer.

Solution.

No. Consider $a=b=c>1$. We have that $a \mid a$ but $a^{2} \mid a$ if and only if $a= \pm 1$.
5. (Hungerford 1.2.11) If $n \in \mathbb{Z}$, what are the possible values of the greatest common divisor
(a) $(n, n+2)$
(b) $(n, n+6)$

Solution.

(a) Let $d=(n, n+2)$. Recall that by definition, $d \mid n$ and $d \mid n+2$. So there are $k_{1}, k_{2} \in \mathbb{Z}$ such that $n=d k_{1}$, and $n+2=d k_{2}$ with $1 \leq d \leq|n|$. Subtracting the first equation from the second and simplifying we have $2=d\left(k_{2}-k_{1}\right)$, and thus, $d \mid 2$. The possible values of d are therefore 1 and 2 . For example, the gcd of $(5,7)=1$ and $(6,8)=2$.
(b) Let $d=(n, n+6)$. Recall that by definition, $d \mid n$ and $d \mid n+6$. So there are $k_{1}, k_{2} \in \mathbb{Z}$ such that $n=d k_{1}$, and $n+6=d k_{2}$ with $1 \leq d \leq|n|$. Subtracting the first equation from the second and simplifying we have $6=d\left(k_{2}-k_{1}\right)$, and thus, $d \mid 6$. Therefore, the possible values of d are $1,2,3,6$. For example, the gcd of $(5,11)=1,(8,14)=2,(9,15)=3$, and $(6,12)=6$.
6. Prove that if k is a positive odd integers, then any sum of k consecutive integers is divisible by k.

Solution.

Let $n \in \mathbb{Z}$ and define S to be the sum of k consecutive integers starting from $n+1$, that is,

$$
\begin{aligned}
S & =\sum_{j=1}^{k} n+j=(n+1)+(n+2)+\cdots+(n+k) . \\
& =\left(\sum_{j=1}^{k} n\right)+\left(\sum_{j=1}^{k} j\right)=k n+\frac{k(k+1)}{2},
\end{aligned}
$$

where for the last equality we use the basic property that $\sum_{j=1}^{k} 1=k$ and $\sum_{j=1}^{k} j=k(k+1) / 2$.
If k is odd then $k+1$ is even, that is, $k+1=2 l$ for some $l \in \mathbb{Z}$. Substituting back into the previous equation, we have

$$
S=k n+\frac{k(2 l)}{2}=k(n+l)
$$

Therefore $k \mid S$.
7. (Hungerford 1.2.20) Prove that $(a, b)=(a, b+a t)$ for every $t \in \mathbb{Z}$.

Solution.

Let $d=(a, b)$. Then, there exist $k_{1}, k_{2} \in \mathbb{Z}$ be such that $d k_{1}=a$ and $d k_{2}=b$. By substitution and factoring, it follows that

$$
\begin{aligned}
b+t a & =d k_{2}+t d k_{1} \\
& =d\left(k_{2}+t k_{1}\right) .
\end{aligned}
$$

Therefore, $d \mid a$ and $d \mid(b+t a)$.
Suppose $c \mid a$ and $c \mid(b+t a)$. (We want to show that $c \leq d)$. Let $k_{1}, k_{2} \in \mathbb{Z}$ be such that $c k_{1}=a$ and $c k_{2}=b+t a$. By substitution, we have $c k_{2}=b+t c k_{1}$ and simplifying gives

$$
c\left(k_{2}-t k_{1}\right)=b
$$

Therefore, $c \mid a$ and $c \mid b$, and by the definition of greatest common divisor $d=(a, b)$, it follows that $c \leq d$. We have shown that $d=(a, b+t a)$.
8. (Hungerford 1.2.28) Prove that a positive integer is divisible by 3 if and only if the sum of its digits is divisible by 3 . [Hint: $10^{3}=999+1$ and similarly for other powers of 10.]

Solution.

Let $n \in \mathbb{Z}$ be positive. First, we prove the following lemma.
Lemma 1. Let $n \in \mathbb{Z}$ be positive. Then, n can be written in terms of its digits, that is, there exist unique $m \geq 0$ and $0 \leq k_{1}, k_{2}, \cdots k_{m}<10$ such that

$$
n=k_{m} 10^{m}+k_{m-1} 10^{m-1}+\cdots+k_{1} 10+k_{0}=\sum_{j=0}^{m} k_{j} 10^{j}
$$

Proof. This follows from a repeated application of the DA: First, divide n by 10

$$
n=10 q_{1}+k_{0}, \quad 0 \leq k_{0}<10 .
$$

If $0 \leq q_{1}<10$ then stop, otherwise divide q_{1} by 10 to get,

$$
n=10\left(10 q_{2}+k_{1}\right)+k_{0}=q_{2} 10^{2}+k_{1} 10+k_{0}
$$

If $0 \leq q_{2}<10$ then stop, otherwise divide q_{2} by 10 . This process terminates when $0 \leq q_{m}<10$.
(The number k_{j} is called the 10^{j} 's-digit of n. For example, $4357=4\left(10^{3}\right)+3\left(10^{2}\right)+5(10)+7$.)
Using the hint we have that $10^{j}=99 \cdots 9+1$, and thus, $10^{j}=3 q_{j}+1$ where $q_{j}=33 \cdots 3$. Writing n in terms of its digits we have

$$
n=\sum_{j=0}^{m} k_{j} 10^{j}=\sum_{j=0}^{m} k_{j}\left(3 q_{j}+1\right)=3\left(\sum_{j=0}^{m} k_{j} q_{j}\right)+\sum_{j=0}^{m} k_{j} .
$$

Let $z=\sum_{j=0}^{m} k_{j} q_{j}$. It follows that $n=3 z+\sum_{j=0}^{m} k_{j}$.
(\Longrightarrow) If $3 \mid n$ then $3 d=n$ for some $d \in \mathbb{Z}$. Thus, $3(d-z)=\sum_{j=0}^{m} k_{j}$, and therefore, $3 \mid \sum_{j=0}^{m} k_{j}$.
(\Longleftarrow) If $3 \mid \sum_{j=0}^{m} k_{j}$ then $3 d=\sum_{j=0}^{m} k_{j}$ for some $d \in \mathbb{Z}$. Thus, $3(d+z)=n$, and therefore, $3 \mid n$.
9. (Hungerford 1.2.34) Prove that
(a) $(a, b) \mid(a+b, a-b)$;
(b) if a is odd and b is even, then $(a, b)=(a+b, a-b)$.

Solution.

(a) Let gcd of $(a, b)=d$ and $(a+b, a-b)=e$. By definition, $d \mid a$ and $d \mid b$, so that $d m=a$ and $d n=b$ for some $m, n \in \mathbb{Z}$. By substitution and factoring we have

$$
\begin{aligned}
& a+b=d m+d n=d(m+n) \\
& a-b=d m-d n=d(m-n)
\end{aligned}
$$

Thus, $d \mid a+b$ and $d \mid a-b$ is a common divisor. Therefore, by Corollary 1.3 we have that $d \mid e$. Moreover, $d \leq e$.
(b) Suppose that a is odd and b is even. Write $a=2 j+1$ and $b=2 k$ for some $j, k \in \mathbb{Z}$. Then, $a+b=2(j+k)+1$ and $a-b=2(j-k)+1$ are both odd. Since $e \mid a+b$ and $e \mid a-b$ we conclude that e must be odd. This implies that the gcd of $(e, 2)=1$.
Let

$$
e m=a+b, \quad e n=a-b
$$

for some $m, n \in \mathbb{Z}$. Adding and substracting both equations and factoring give, respectively,

$$
\begin{aligned}
& e(m+n)=2 a \\
& e(m-n)=2 b
\end{aligned}
$$

Thus, $e \mid 2 a$ and $e \mid 2 b$.
We have collectively shown that $e \mid 2 a$ and $e \mid 2 b$ and gcd of $(e, 2)=1$. Therefore, by Theorem 1.4 we have that $e \mid a$ and $e \mid b$. By the definition for gcd of $d=(a, b)$ it follows that $e \leq d$. Combined with the first part of the problem $d \leq e$, we conclude $d=e$.

