
MTH 310: HW 1 - Solutions

Instructor: Matthew Cha

Due: May 23, 2018

Problems from Hungerford’s book (3rd ed.) are labeled by Hungerford chpt.sec.#.

1. (Hungerford 1.1.2) Find the quotient q and remainder r when a is divided by b.

(a) a = −51; b = 6

(b) a = 302; b = 19

(c) a = 2000; b = 17

Solution.

Recall that when a is divided by b the quotient and remainder are the unique integers that satisfy
a = bq + r where 0 ≤ r < b.

(a) −51 = 6(−9) + 3 so q = −9 and r = 3.

(b) 302 = 19(15) + 17 so q = 15 and r = 17.

(c) 2000 = 17 ∗ 117 + 11 so q = 117 and r = 11.

2. (Hungerford 1.1.7) Use the Division Algorithm to prove that the square of any integer a is either of
the form 3k or of the form 3k + 1 for some integer k.

Solution.

Let a ∈ Z. By the Division Algorithm(DA), there exist unique q, r ∈ Z such that a = 3q + r where
0 ≤ r < 3. Thus, the possible values for the remainder r are 0, 1 and 2. Let’s treat each case separately.
(We want to show that a2 when divided by 3 has a remainder of 0 or 1.)

Case 1: (r = 0) We have that a2 = (3q)(3q) = 3(3q2). So a2 is of the form 3k.

Case 2: (r = 1) a2 = (3q + 1)(3q + 1) = (3q)2 + 2(3q) + 1 = 3(3q2 + 2q) + 1. So a2 is of the form 3k+ 1.

Case 3: (r = 2) a2 = (3q + 2)(3q + 2) = (3q)2 + 4(3q) + 4 = 3(3q2 + 4q + 1) + 1. So a2 is of the form
3k + 1.

Therefore, a2 is of the form 3k or 3k + 1.

3. (Hungerford 1.1.10) Let n be a positive integer. Prove that a and c leave the same remainder when
divided by n if and only if a− c = nk for some integer k.

Solution.

( =⇒ ) Suppose a and c leave the same remainder when divided by n. Then there exists q1, q2, r ∈ Z
such that

a = nq1 + r

c = nq2 + r 0 ≤ r < n.

Subtracting the second equation from the first we get

a− c = n(q1 − q2) + (r − r) = n(q1 − q2).
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(⇐= ) Suppose a− c = nk for some k ∈ Z. By uniqueness of the remainder in the DA, we have that
a− c when divided by n leaves a unique remainder r = 0.

Now, apply the DA for a and c, respectively, when divided by n. There exist unique q1, q2, r1, r2 ∈ Z
such that

a = nq1 + r1 0 ≤ r1 < n,

c = nq2 + r2 0 ≤ r2 < n.

(We want to show that r1 = r2.) Without loss of generality (WLOG) suppose that r1 ≥ r2, (otherwise
just relabel). Subtracting the second equation from the first we get

a− c = n(q1 − q2) + (r1 − r2),

where 0 ≤ r1 − r2 ≤ r1 < n. By assumption, we know that a − c when divided by n must leave a
unique remainder r = 0. It follows that r1 − r2 = 0, and therefore, r1 = r2.

4. (Hungerford 1.2.9) If a|c and b|c, must ab|c? Justify your answer.

Solution.

No. Consider a = b = c > 1. We have that a|a but a2|a if and only if a = ±1.

5. (Hungerford 1.2.11) If n ∈ Z, what are the possible values of the greatest common divisor

(a) (n, n + 2)

(b) (n, n + 6)

Solution.

(a) Let d = (n, n + 2). Recall that by definition, d|n and d|n + 2. So there are k1, k2 ∈ Z such that
n = dk1, and n + 2 = dk2 with 1 ≤ d ≤ |n|. Subtracting the first equation from the second and
simplifying we have 2 = d(k2 − k1), and thus, d|2. The possible values of d are therefore 1 and 2.

For example, the gcd of (5, 7) = 1 and (6, 8) = 2.

(b) Let d = (n, n + 6). Recall that by definition, d|n and d|n + 6. So there are k1, k2 ∈ Z such that
n = dk1, and n + 6 = dk2 with 1 ≤ d ≤ |n|. Subtracting the first equation from the second and
simplifying we have 6 = d(k2− k1), and thus, d|6. Therefore, the possible values of d are 1, 2, 3, 6.

For example, the gcd of (5, 11) = 1, (8, 14) = 2, (9, 15) = 3, and (6, 12) = 6.

6. Prove that if k is a positive odd integers, then any sum of k consecutive integers is divisible by k.

Solution.

Let n ∈ Z and define S to be the sum of k consecutive integers starting from n + 1, that is,

S =

k∑
j=1

n + j = (n + 1) + (n + 2) + · · ·+ (n + k).

=

(
k∑

j=1

n

)
+

(
k∑

j=1

j

)
= kn +

k(k + 1)

2
,

where for the last equality we use the basic property that
∑k

j=1 1 = k and
∑k

j=1 j = k(k + 1)/2.

If k is odd then k + 1 is even, that is, k + 1 = 2l for some l ∈ Z. Substituting back into the previous
equation, we have

S = kn +
k(2l)

2
= k(n + l).

Therefore k|S.
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7. (Hungerford 1.2.20) Prove that (a, b) = (a, b + at) for every t ∈ Z.

Solution.

Let d = (a, b). Then, there exist k1, k2 ∈ Z be such that dk1 = a and dk2 = b. By substitution and
factoring, it follows that

b + ta = dk2 + tdk1

= d(k2 + tk1).

Therefore, d|a and d|(b + ta) .

Suppose c|a and c|(b + ta). (We want to show that c ≤ d). Let k1, k2 ∈ Z be such that ck1 = a and
ck2 = b + ta. By substitution, we have ck2 = b + tck1 and simplifying gives

c(k2 − tk1) = b.

Therefore, c|a and c|b, and by the definition of greatest common divisor d = (a, b), it follows that c ≤ d.
We have shown that d = (a, b + ta).

8. (Hungerford 1.2.28) Prove that a positive integer is divisible by 3 if and only if the sum of its digits
is divisible by 3. [Hint : 103 = 999 + 1 and similarly for other powers of 10.]

Solution.

Let n ∈ Z be positive. First, we prove the following lemma.

Lemma 1. Let n ∈ Z be positive. Then, n can be written in terms of its digits, that is, there exist
unique m ≥ 0 and 0 ≤ k1, k2, · · · km < 10 such that

n = km10m + km−110m−1 + · · ·+ k110 + k0 =

m∑
j=0

kj10j .

Proof. This follows from a repeated application of the DA: First, divide n by 10

n = 10q1 + k0, 0 ≤ k0 < 10.

If 0 ≤ q1 < 10 then stop, otherwise divide q1 by 10 to get,

n = 10(10q2 + k1) + k0 = q2102 + k110 + k0.

If 0 ≤ q2 < 10 then stop, otherwise divide q2 by 10. This process terminates when 0 ≤ qm < 10.

(The number kj is called the 10j ’s–digit of n. For example, 4357 = 4(103) + 3(102) + 5(10) + 7.)

Using the hint we have that 10j = 99 · · · 9 + 1, and thus, 10j = 3qj + 1 where qj = 33 · · · 3. Writing n
in terms of its digits we have

n =

m∑
j=0

kj10j =

m∑
j=0

kj(3qj + 1) = 3

(
m∑
j=0

kjqj

)
+

m∑
j=0

kj .

Let z =
∑m

j=0 kjqj . It follows that n = 3z +
∑m

j=0 kj .

( =⇒ ) If 3|n then 3d = n for some d ∈ Z. Thus, 3(d− z) =
∑m

j=0 kj , and therefore, 3|
∑m

j=0 kj .

(⇐= ) If 3|
∑m

j=0 kj then 3d =
∑m

j=0 kj for some d ∈ Z. Thus, 3(d + z) = n, and therefore, 3|n.

9. (Hungerford 1.2.34) Prove that

(a) (a, b)|(a + b, a− b);

(b) if a is odd and b is even, then (a, b) = (a + b, a− b).
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Solution.

(a) Let gcd of (a, b) = d and (a+ b, a− b) = e. By definition, d|a and d|b, so that dm = a and dn = b
for some m,n ∈ Z. By substitution and factoring we have

a + b = dm + dn = d(m + n)

a− b = dm− dn = d(m− n).

Thus, d|a + b and d|a − b is a common divisor. Therefore, by Corollary 1.3 we have that d|e.
Moreover, d ≤ e.

(b) Suppose that a is odd and b is even. Write a = 2j + 1 and b = 2k for some j, k ∈ Z. Then,
a + b = 2(j + k) + 1 and a− b = 2(j − k) + 1 are both odd. Since e|a + b and e|a− b we conclude
that e must be odd. This implies that the gcd of (e, 2) = 1.

Let
em = a + b, en = a− b

for some m,n ∈ Z. Adding and substracting both equations and factoring give, respectively,

e(m + n) = 2a

e(m− n) = 2b.

Thus, e|2a and e|2b.
We have collectively shown that e|2a and e|2b and gcd of (e, 2) = 1. Therefore, by Theorem 1.4
we have that e|a and e|b. By the definition for gcd of d = (a, b) it follows that e ≤ d. Combined
with the first part of the problem d ≤ e, we conclude d = e.
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