MTH 310: HW 1 - Solutions

Instructor: Matthew Cha

Due: May 23, 2018

Problems from Hungerford’s book (3rd ed.) are labeled by Hungerford chpt.sec.#.

1. (Hungerford 1.1.2) Find the quotient ¢ and remainder » when a is divided by b.

(a) a=-51;b=6
(b) @ =302; b=19
(¢) a=2000; b=17

Solution.
Recall that when a is divided by b the quotient and remainder are the unique integers that satisfy
a=>bg+r where 0 <r <b.

(a) =51 =6(—9)+3s0¢g=—-9 and r =3.

(b) 302 =19(15) 4+ 17 s0o ¢ =15 and r = 17.

(¢) 2000 = 17117+ 11 so ¢ = 117 and r = 11.

2. (Hungerford 1.1.7) Use the Division Algorithm to prove that the square of any integer a is either of
the form 3k or of the form 3k + 1 for some integer k.
Solution.

Let a € Z. By the Division Algorithm(DA), there exist unique ¢,r € Z such that a = 3¢ + r where
0 < r < 3. Thus, the possible values for the remainder r are 0,1 and 2. Let’s treat each case separately.
(We want to show that a? when divided by 3 has a remainder of 0 or 1.)

Case 1: (r = 0) We have that a? = (3¢)(3q) = 3(3¢?). So a? is of the form 3k.
Case 2: (r=1)a?>= (3¢+1)(3qg+1) = (3¢)> +2(3¢q) +1 = 3(3¢> +2q) + 1. So a? is of the form 3k + 1.

Case 3: (r=2)a?>= (3¢+2)(3q+2) = (39)?> +4(3q) + 4 = 3(3¢> + 4¢ + 1) + 1. So a? is of the form
3k + 1.

Therefore, a? is of the form 3k or 3k + 1.

3. (Hungerford 1.1.10) Let n be a positive integer. Prove that a and ¢ leave the same remainder when
divided by n if and only if a — ¢ = nk for some integer k.

Solution.

( = ) Suppose a and c leave the same remainder when divided by n. Then there exists ¢1, 2,7 € Z
such that

a=nqg +r
c=ng+r 0<r<n.

Subtracting the second equation from the first we get

a—c=n(q1—q)+ (r—r)=n(g — q).



( <) Suppose a — ¢ = nk for some k € Z. By uniqueness of the remainder in the DA, we have that
a — ¢ when divided by n leaves a unique remainder r = 0.

Now, apply the DA for a and ¢, respectively, when divided by n. There exist unique ¢1,q2,71,72 € Z
such that

a=ng +r 0<r <n,

c=nqs+ 1 0<ry <n.

(We want to show that r1 = r2.) Without loss of generality (WLOG) suppose that r1 > 73, (otherwise
just relabel). Subtracting the second equation from the first we get

a—c=n(q —q)+(r1 —r2),

where 0 < r; — 72 < r; < n. By assumption, we know that a — ¢ when divided by n must leave a
unique remainder r = 0. It follows that r; — ro = 0, and therefore, ry = rs.

. (Hungerford 1.2.9) If a|c and b|c, must ab|c? Justify your answer.

Solution.

No. Consider a = b= ¢ > 1. We have that a|a but a?|a if and only if a = +1.

. (Hungerford 1.2.11) If n € Z, what are the possible values of the greatest common divisor

(a) (n,n+2)
(b) (n,n+6)

Solution.

(a) Let d = (n,n + 2). Recall that by definition, d|n and d|n + 2. So there are ki, ko € Z such that
n = dky, and n + 2 = dko with 1 < d < |n|. Subtracting the first equation from the second and
simplifying we have 2 = d(ke — k1), and thus, d|2. The possible values of d are therefore 1 and 2.

For example, the ged of (5,7) =1 and (6,8) = 2.

(b) Let d = (n,n + 6). Recall that by definition, d|n and d|n + 6. So there are k1, ke € Z such that
n = dky, and n + 6 = dko with 1 < d < |n|. Subtracting the first equation from the second and
simplifying we have 6 = d(ks — k1), and thus, d|6. Therefore, the possible values of d are 1,2, 3, 6.

For example, the ged of (5,11) =1, (8,14) =2, (9,15) = 3, and (6,12) = 6.
. Prove that if k is a positive odd integers, then any sum of k£ consecutive integers is divisible by k.

Solution.

Let n € Z and define S to be the sum of k consecutive integers starting from n + 1, that is,

k
S=>n+j=Mn+1)+n+2)+ -+ n+k).
j=1
k k
= (;n> + (;g) zlm-i-ik(k;l),

where for the last equality we use the basic property that Z?Zl 1==F% and Z?le =k(k+1)/2.

If £ is odd then k£ 4 1 is even, that is, kK + 1 = 2l for some [ € Z. Substituting back into the previous

equation, we have

S:kn—i—@:k(n—&—l).

Therefore k|S.



7. (Hungerford 1.2.20) Prove that (a,b) = (a,b + at) for every t € Z.

Solution.

Let d = (a,b). Then, there exist ki, ks € Z be such that dk; = a and dky = b. By substitution and
factoring, it follows that

b+ ta = dky + tdk,
= d(ky + thy).

Therefore, d|a and d|(b + ta) .

Suppose cla and ¢|(b + ta). (We want to show that ¢ < d). Let ki, ks € Z be such that ck; = a and
cko = b+ ta. By substitution, we have cke = b+ tck; and simplifying gives

c(ky — thy) = b.

Therefore, c|a and c|b, and by the definition of greatest common divisor d = (a, b), it follows that ¢ < d.
We have shown that d = (a, b+ ta).

8. (Hungerford 1.2.28) Prove that a positive integer is divisible by 3 if and only if the sum of its digits
is divisible by 3. [Hint: 10% = 999 + 1 and similarly for other powers of 10.]

Solution.
Let n € Z be positive. First, we prove the following lemma.

Lemma 1. Let n € Z be positive. Then, n can be written in terms of its digits, that is, there exist
unique m > 0 and 0 < kqy, ko, - - - by, < 10 such that

n=kp10™ + k110" 4+ k110 + ko = f:kjmj.
j=0
Proof. This follows from a repeated application of the DA: First, divide n by 10
n = 10q1 + ko, 0 < kg < 10.
If 0 < g1 < 10 then stop, otherwise divide ¢; by 10 to get,
n = 10(10gy + k1) + ko = q210% + k110 + k.
If 0 < g2 < 10 then stop, otherwise divide g2 by 10. This process terminates when 0 < ¢, < 10. O

(The number k; is called the 107’s-digit of n. For example, 4357 = 4(10%) + 3(10%) + 5(10) + 7.)

Using the hint we have that 10 = 99---9 + 1, and thus, 107 = 3q; + 1 where ¢; = 33--- 3. Writing n
in terms of its digits we have

n=> k10" = k;(3¢;+1) = 3(2’%‘%‘) +y ki
=0 7=0 =0 7=0

Let z = >0 kjq;. It follows that n = 32 + 377" k;.
(==) If 3|n then 3d = n for some d € Z. Thus, 3(d — z) = > k;, and therefore, 3| 327 k;.
(=) I3[ 37" kj then 3d = 377" k; for some d € Z. Thus, 3(d + 2) = n, and therefore, 3|n.

9. (Hungerford 1.2.34) Prove that

(a) (a,b)[(a+b,a—0);
(b) if a is odd and b is even, then (a,b) = (a +b,a — b).



Solution.

(a)

Let ged of (a,b) = d and (a+b,a —b) = e. By definition, d|a and d|b, so that dm = a and dn = b
for some m,n € Z. By substitution and factoring we have

a+b=dm+dn=dm-+n)
a—b=dm—dn=d(m—n).

Thus, dla + b and d|a — b is a common divisor. Therefore, by Corollary 1.3 we have that d|e.
Moreover, d < e.

Suppose that a is odd and b is even. Write ¢ = 25 + 1 and b = 2k for some j,k € Z. Then,
a+b=2(j+k)+1and a—b=2(j —k)+ 1 are both odd. Since e|a + b and e|a — b we conclude
that e must be odd. This implies that the ged of (e,2) = 1.
Let

em =a+ b, en=a—">b

for some m,n € Z. Adding and substracting both equations and factoring give, respectively,

e(m+mn)=2a
e(m —n) = 2b.

Thus, e|2a and e|2b.

We have collectively shown that e|2a and e|2b and ged of (e,2) = 1. Therefore, by Theorem 1.4
we have that ela and e|b. By the definition for ged of d = (a,b) it follows that e < d. Combined
with the first part of the problem d < e, we conclude d = e.



