MTH 310: HW 1

Instructor: Matthew Cha
Due: May 23, 2018

Problems from Hungerford's book (3rd ed.) are labeled by Hungerford chpt.sec.\#.

1. (Hungerford 1.1.2) Find the quotient q and remainder r when a is divided by b.
(a) $a=-51 ; b=6$
(b) $a=302 ; b=19$
(c) $a=2000 ; b=17$
2. (Hungerford 1.1.7) Use the Division Algorithm to prove that the square of any integer a is either of the form $3 k$ or of the form $3 k+1$ for some integer k.
3. (Hungerford 1.1.10) Let n be a positive integer. Prove that a and c leave the same remainder when divided by n if and only if $a-c=n k$ for some integer k.
4. (Hungerford 1.2.9) If $a \mid c$ and $b \mid c$, must $a b \mid c$? Justify your answer.
5. (Hungerford 1.2.11) If $n \in \mathbb{Z}$, what are the possible values of
(a) $(n, n+2)$
(b) $(n, n+6)$
6. Prove that if k is a positive odd integers, then any sum of k consecutive integers is divisible by k.
7. (Hungerford 1.2.20) Prove that $(a, b)=(a, b+a t)$ for every $t \in \mathbb{Z}$.
8. (Hungerford 1.2.28) Prove that a positive integer is divisible by 3 if and only if the sum of its digits is divisible by 3 . [Hint: $10^{3}=999+1$ and similarly for other powers of 10.]
9. (Hungerford 1.2.34) Prove that
(a) $(a, b) \mid(a+b, a-b)$;
(b) if a is odd and b is even, then $(a, b)=(a+b, a-b)$.
