
Name SOLUTIONS

PID

Final

MTH 310, Thursday June 28, 2018

Instructions: This exam is closed notes, closed books, no calculators and no electronic devices of any
kind. There are five problems worth 20 points each. If a problem has multiple parts, it may be possible to
solve a later part without solving the previous parts. Solutions should be written neatly and in a logically
organized manner. Partial credit will be given if the student demonstrates an understanding of the problem
and presents some steps leading to the solution. Correct answers with no work will be given no credit. The
back sheets may be used as scratch paper but will not be graded for credit.
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Problem 1.

a. (10 points) Compute the remainder of 2310 when divided by 5. (Hint : 2310 = (22)155)

Following the hint we have that 2310 = 4155. Thus, [2310]5 = [4]1555 = [−1]1555 = [−1]5 = [4]5. By
comparing congruence classes we have determined that the remainder is 4.

b. (10 points) Let f : Z6 → Z4 be a homomorphism of rings with f([1]6) = [2]4. Compute f([4]6).

f([4]6) = f([1]6 + [1]6 + [1]6 + [1]6)

= f([1]6) + f([1]6) + f([1]6) + f([1]6) (f respects addition)

= [2]4 + [2]4 + [2]4 + [2]4

= [8]4 = [0]4.
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Problem 2. Let p(x) = x3 + 2x+ 1 in Z3[x].

a. (6 pts) Show that p(x) is irreducible in Z3[x].

We have that

p(0) = 03 + 2(0) + 1 = 1

p(1) = 13 + 2(1) + 1 = 1

p(2) = 23 + 2(2) + 1 = 1.

Thus p(x) has no roots in Z3. By the Factor Theorem, p(x) has no linear factor. Since p(x) is degree 3
and has no linear factor we conclude that p(x) is irreducible.

b. (7 pts) Find the inverse of [x2 + 1] in Z3[x]/〈p〉.
Following the Euclidean Algorithm we find that

x3 + 2x+ 1 = (x2 + 1)(x) + (x+ 1)

x2 + 1 = (x+ 1)(x+ 2) + 2

where the first equality can be seen by long division, and the second can just be check by hand:

Therefore,

2 = (x2 + 1)− (x+ 1)(x+ 2)

= (x2 + 1)− ((x3 + 2x+ 1)− (x2 + 1)(x))(x+ 2)

= (x2 + 1)(1 + x(x+ 2)) + (x3 + 2x+ 1)(−1)(x+ 2)

= (x2 + 1)(x2 + 2x+ 1) + (x3 + 2x+ 1)(2x+ 1)

Multiplying by 2 we have

1 = (x2 + 1)(2x2 + x+ 2) + (x3 + 2x+ 1)(x+ 2).

Therefore, [2x2 + x+ 2] = [x2 + 1]−1.

c. (7 pts) How many elements are in the quotient ring Z3[x]/〈p〉? Is Z3[x]/〈p〉 a field?

Since each congruence class has a representative of degree less then 3, we have that Z3[x]/〈p〉 = {ax2 +
bx+ c : a, b, c ∈ Z3}. Therefore, Z3[x]/〈p〉 has 33 = 27 elements.

Yes, the quotient ring Z3[x]/〈p〉 is a field since p is irreducible, as we proved in a.
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Problem 3.

a. (6 pts) Show that x2 + 1 has no roots in Z7.

We can simply check by hand that f(x) = x2 + 1 has no roots in Z7.

f(0) = 02 + 1 = 1

f(1) = 12 + 1 = 2

f(2) = 22 + 1 = 5

f(3) = 32 + 1 = 3

f(4) = 42 + 1 = 3

f(5) = 52 + 1 = 5

f(6) = 62 + 1 = 2.

Therefore f(x) has no roots in Z7.

b. (7 pts) Show that if a 6= 0 or b 6= 0 in Z7 then a2 + b2 6= 0 in Z7.

(Hint: First, show that if b 6= 0 then a2 + b2 = b2((b−1a)2 + 1). Then, use part a.)

If b 6= 0 then b is a unit since Z7 is a field and b2 = b · b 6= 0 since Z7 is an integral domain.

If a = 0, then a2 + b2 = b2 6= 0.

Suppose a 6= 0. Following the hint we have

a2 + b2 = b2(c) where c = (b−1a)2 + 1.

By a. we know that c = f(b−1a) = (b−1a)2 + 1 6= 0 since b−1a 6= 0. Since a2 + b2 is a product of two
non-zero elements and Z7 is an integral domain, we conclude that a2 + b2 6= 0.

c. (7 pts) Consider the ring Z7[i] := {a+ ib : a, b ∈ Z7}. Recall that i2 = −1 and

(a+ ib) + (c+ id) = (a+ c) + i(b+ d),

(a+ ib)(c+ id) = (ac− bd) + i(ad+ bc).

Prove that Z7[i] is an integral domain. Is Z7[i] a field?

Let a+ ib, c+ id ∈ Z7[i] and suppose (a+ ib)(c+ id) = 0. It follows that

0 = (a+ ib)(a− ib)(c+ id)(c− id)

= (a2 + b2)(c2 + d2).

Since Z7 is a integral domain, either a2 + b2 = 0 or c2 + d2 = 0. By the contrapositive of what we showed
in b., if a2 + b2 = 0 then a = 0 and b = 0. Therefore, a+ ib = 0. Similarly, if c2 + d2 = 0 then c+ id = 0.
We conclude that Z7[x] is an integral domain.

Z7[i] has 72 = 49 elements. We know that every finite integral domain is a field, therefore Z7[i] is a field.
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Problem 4. Let f : R→ S be a homomorphism of rings and J ⊂ S be an ideal. Define the set

I = {a ∈ R : f(a) ∈ J} ⊂ R.

a. (6 pts) Show that ker f ⊂ I.

Let a ∈ ker f , that is, f(a) = 0S . Since J is an ideal, its a subring and contains 0S ∈ J . Thus f(a) ∈ J
which implies that a ∈ I. Therefore, ker f ⊂ I.

b. (7 pts) Prove that I is a subring of R.

Let a, b ∈ I, that is, f(a) ∈ J and f(b) ∈ J . Since J is an ideal it is closed under addition and
multiplication, therefore, f(a) + f(b) ∈ J and f(a)f(b) ∈ J . Since f is a homomorphism

f(a+ b) = f(a) + f(b) ∈ J
f(ab) = f(a)f(b) ∈ J.

Therefore a+ b ∈ J and ab ∈ J .

By a basic ring homomorphism property we know that f(0R) = OS ∈ J which implies 0R ∈ I and
f(−a) = −f(a) ∈ J . By the subring theorem we conclude that I is a subring of R.

c. (7 pts) Prove that I is an ideal in R.

Let a ∈ I and r ∈ R. It follows that f(a) ∈ J and f(r) ∈ S. Since J is an ideal it has the ideal property,
thus f(a)f(r) = f(ar) ∈ J and f(r)f(a) = f(ra) ∈ J Therefore, ar ∈ I and ra ∈ I.
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Problem 5. Let φ : Z[x]→ Z3 be defined by

φ(a0 + a1x+ · · ·+ anx
n) = [a0]3.

a. (10 pts) Prove that φ is a surjective ring homomorphism

Let [a] ∈ Z3. Then, for the constant polynomial a ∈ Z[x] we have that φ(a) = [a]3. Thus, φ is surjective.

Let f(x) = a0 + a1x+ · · ·+ amx
m and g(x) = b0 + b1x+ · · · bnxn be in Z[x]. We can assume without loss

of generality that m = n by adding terms with 0 coefficient Then,

φ(f(x) + g(x)) = φ((a0 + b0) + (a1 + b1)x+ · · ·+ (an + bn)xn

= [a0] + [b0]

= φ(f(x)) + φ(g(x))

φ(f(x)g(x)) = φ

(
n+n∑
k=0

ckx
k

)
where ck =

k∑
i=0

aibk−i

= [c0]

= [a0b0]

= [a0][b0]

= φ(f(x))φ(g(x)).

Thus φ respects + and ·. We conclude that φ is a surjective homomorphism.

b. (10 pts) Show that kerφ = 〈3, x〉 is the ideal generated by 3 and x.

(Thus, by the First Isomorphism Theorem we have that Z[x]/〈3, x〉 ∼= Z3.)

Recall that 〈3, x〉 = {3f(x) + xg(x) : f(x), g(x) ∈ Z[x]}.
Let f(x) ∈ kerφ and write f(x) = a0 + a1x + · · · + anx

n. Then, φ(f(x)) = [a0] = [0]. Thus, 3|a0 and
there exists k ∈ Z such that a0 = 3k. It follows that

f(x) = a0 + a1x+ · · ·+ anx
n

= 3k + x(a1 + a2x+ · · ·+ anx
n−1).

Thus, f(x) ∈ 〈3, x〉.
Let h(x) ∈ 〈3, x〉 and write h(x) = 3f(x) + xg(x) for some f(x) = a0 + a1x + · · · + amx

m and g(x) =
b0 + b1x+ · · · bnxn be in Z[x]. It follows that

φ(h(x)) = φ(3f(x) + xg(x))

= φ(3)φ(f(x)) + φ(x)φ(g(x))

= [0]φ(f(x)) + [0]φ(g(x))

= [0],

where we use that φ(3) = [3] = [0] and φ(x) = [0]. Therefore h(x) = 3f(x) + xg(x) ∈ kerφ.

We conclude that ker f = 〈3, x〉.
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Extra Credit. (10 pts)
Let n, p ∈ Z be a positive, p be prime and 〈p〉 ⊂ Z[x] denote the principal ideal generated by p. Suppose

for f(x), g(x), h(x), r(x), s(x) ∈ Z[x] we have that

(f(x)r(x) + g(x)s(x)) + 〈p〉 = 1 + 〈p〉

and
(f(x)g(x)) + 〈p〉 = h(x) + 〈p〉.

Prove that there exist F (x), G(x) ∈ Z[x] such that the following hold

i. F (x) + 〈p〉 = f(x) + 〈p〉,

ii. G(x) + 〈p〉 = g(x) + 〈p〉,

iii. F (x)G(x) + 〈pn〉 = h(x) + 〈pn〉.
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