Name SOLUTIONS

PID

Final

MTH 310, Thursday June 28, 2018

Instructions: This exam is closed notes, closed books, no calculators and no electronic devices of any kind. There are five problems worth 20 points each. If a problem has multiple parts, it may be possible to solve a later part without solving the previous parts. Solutions should be written neatly and in a logically organized manner. Partial credit will be given if the student demonstrates an understanding of the problem and presents some steps leading to the solution. Correct answers with no work will be given no credit. The back sheets may be used as scratch paper but will not be graded for credit.

1	2	3	4	5	Total

Problem 1.

a. (10 points) Compute the remainder of 2^{310} when divided by 5 . (Hint: $\left.2^{310}=\left(2^{2}\right)^{155}\right)$

Following the hint we have that $2^{310}=4^{155}$. Thus, $\left[2^{310}\right]_{5}=[4]_{5}^{155}=[-1]_{5}^{155}=[-1]_{5}=[4]_{5}$. By comparing congruence classes we have determined that the remainder is 4 .
b. (10 points) Let $f: \mathbb{Z}_{6} \rightarrow \mathbb{Z}_{4}$ be a homomorphism of rings with $f\left([1]_{6}\right)=[2]_{4}$. Compute $f\left([4]_{6}\right)$.

$$
\begin{aligned}
f\left([4]_{6}\right) & =f\left([1]_{6}+[1]_{6}+[1]_{6}+[1]_{6}\right) \\
& =f\left([1]_{6}\right)+f\left([1]_{6}\right)+f\left([1]_{6}\right)+f\left([1]_{6}\right) \quad \text { (f respects addition) } \\
& =[2]_{4}+[2]_{4}+[2]_{4}+[2]_{4} \\
& =[8]_{4}=[0]_{4}
\end{aligned}
$$

Problem 2. Let $p(x)=x^{3}+2 x+1$ in $\mathbb{Z}_{3}[x]$.
a. (6 pts) Show that $p(x)$ is irreducible in $\mathbb{Z}_{3}[x]$.

We have that

$$
\begin{aligned}
& p(0)=0^{3}+2(0)+1=1 \\
& p(1)=1^{3}+2(1)+1=1 \\
& p(2)=2^{3}+2(2)+1=1
\end{aligned}
$$

Thus $p(x)$ has no roots in \mathbb{Z}_{3}. By the Factor Theorem, $p(x)$ has no linear factor. Since $p(x)$ is degree 3 and has no linear factor we conclude that $p(x)$ is irreducible.
b. (7 pts) Find the inverse of $\left[x^{2}+1\right]$ in $\mathbb{Z}_{3}[x] /\langle p\rangle$.

Following the Euclidean Algorithm we find that

$$
\begin{aligned}
x^{3}+2 x+1 & =\left(x^{2}+1\right)(x)+(x+1) \\
x^{2}+1 & =(x+1)(x+2)+2
\end{aligned}
$$

where the first equality can be seen by long division, and the second can just be check by hand:
Therefore,

$$
\begin{aligned}
2 & =\left(x^{2}+1\right)-(x+1)(x+2) \\
& =\left(x^{2}+1\right)-\left(\left(x^{3}+2 x+1\right)-\left(x^{2}+1\right)(x)\right)(x+2) \\
& =\left(x^{2}+1\right)(1+x(x+2))+\left(x^{3}+2 x+1\right)(-1)(x+2) \\
& =\left(x^{2}+1\right)\left(x^{2}+2 x+1\right)+\left(x^{3}+2 x+1\right)(2 x+1)
\end{aligned}
$$

Multiplying by 2 we have

$$
1=\left(x^{2}+1\right)\left(2 x^{2}+x+2\right)+\left(x^{3}+2 x+1\right)(x+2) .
$$

Therefore, $\left[2 x^{2}+x+2\right]=\left[x^{2}+1\right]^{-1}$.
c. $(7 \mathrm{pts})$ How many elements are in the quotient ring $\mathbb{Z}_{3}[x] /\langle p\rangle$? Is $\mathbb{Z}_{3}[x] /\langle p\rangle$ a field?

Since each congruence class has a representative of degree less then 3, we have that $\mathbb{Z}_{3}[x] /\langle p\rangle=\left\{a x^{2}+\right.$ $\left.b x+c: a, b, c \in \mathbb{Z}_{3}\right\}$. Therefore, $\mathbb{Z}_{3}[x] /\langle p\rangle$ has $3^{3}=27$ elements.
Yes, the quotient ring $\mathbb{Z}_{3}[x] /\langle p\rangle$ is a field since p is irreducible, as we proved in a.

Problem 3.

a. (6 pts) Show that $x^{2}+1$ has no roots in \mathbb{Z}_{7}.

We can simply check by hand that $f(x)=x^{2}+1$ has no roots in \mathbb{Z}_{7}.

$$
\begin{aligned}
& f(0)=0^{2}+1=1 \\
& f(1)=1^{2}+1=2 \\
& f(2)=2^{2}+1=5 \\
& f(3)=3^{2}+1=3 \\
& f(4)=4^{2}+1=3 \\
& f(5)=5^{2}+1=5 \\
& f(6)=6^{2}+1=2 .
\end{aligned}
$$

Therefore $f(x)$ has no roots in \mathbb{Z}_{7}.
b. (7 pts) Show that if $a \neq 0$ or $b \neq 0$ in \mathbb{Z}_{7} then $a^{2}+b^{2} \neq 0$ in \mathbb{Z}_{7}.
(Hint: First, show that if $b \neq 0$ then $a^{2}+b^{2}=b^{2}\left(\left(b^{-1} a\right)^{2}+1\right)$. Then, use part a.)
If $b \neq 0$ then b is a unit since \mathbb{Z}_{7} is a field and $b^{2}=b \cdot b \neq 0$ since \mathbb{Z}_{7} is an integral domain.
If $a=0$, then $a^{2}+b^{2}=b^{2} \neq 0$.
Suppose $a \neq 0$. Following the hint we have

$$
a^{2}+b^{2}=b^{2}(c) \quad \text { where } \quad c=\left(b^{-1} a\right)^{2}+1
$$

By a. we know that $c=f\left(b^{-1} a\right)=\left(b^{-1} a\right)^{2}+1 \neq 0$ since $b^{-1} a \neq 0$. Since $a^{2}+b^{2}$ is a product of two non-zero elements and \mathbb{Z}_{7} is an integral domain, we conclude that $a^{2}+b^{2} \neq 0$.
c. $(7 \mathrm{pts})$ Consider the ring $\mathbb{Z}_{7}[i]:=\left\{a+i b: a, b \in \mathbb{Z}_{7}\right\}$. Recall that $i^{2}=-1$ and

$$
\begin{aligned}
(a+i b)+(c+i d) & =(a+c)+i(b+d) \\
(a+i b)(c+i d) & =(a c-b d)+i(a d+b c)
\end{aligned}
$$

Prove that $\mathbb{Z}_{7}[i]$ is an integral domain. Is $\mathbb{Z}_{7}[i]$ a field?
Let $a+i b, c+i d \in \mathbb{Z}_{7}[i]$ and suppose $(a+i b)(c+i d)=0$. It follows that

$$
\begin{aligned}
0 & =(a+i b)(a-i b)(c+i d)(c-i d) \\
& =\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right) .
\end{aligned}
$$

Since \mathbb{Z}_{7} is a integral domain, either $a^{2}+b^{2}=0$ or $c^{2}+d^{2}=0$. By the contrapositive of what we showed in b., if $a^{2}+b^{2}=0$ then $a=0$ and $b=0$. Therefore, $a+i b=0$. Similarly, if $c^{2}+d^{2}=0$ then $c+i d=0$. We conclude that $\mathbb{Z}_{7}[x]$ is an integral domain.
$\mathbb{Z}_{7}[i]$ has $7^{2}=49$ elements. We know that every finite integral domain is a field, therefore $\mathbb{Z}_{7}[i]$ is a field.

Problem 4. Let $f: R \rightarrow S$ be a homomorphism of rings and $J \subset S$ be an ideal. Define the set

$$
I=\{a \in R: f(a) \in J\} \subset R
$$

a. (6 pts) Show that $\operatorname{ker} f \subset I$.

Let $a \in \operatorname{ker} f$, that is, $f(a)=0_{S}$. Since J is an ideal, its a subring and contains $0_{S} \in J$. Thus $f(a) \in J$ which implies that $a \in I$. Therefore, $\operatorname{ker} f \subset I$.
b. $(7 \mathrm{pts})$ Prove that I is a subring of R.

Let $a, b \in I$, that is, $f(a) \in J$ and $f(b) \in J$. Since J is an ideal it is closed under addition and multiplication, therefore, $f(a)+f(b) \in J$ and $f(a) f(b) \in J$. Since f is a homomorphism

$$
\begin{aligned}
f(a+b) & =f(a)+f(b) \in J \\
f(a b) & =f(a) f(b) \in J
\end{aligned}
$$

Therefore $a+b \in J$ and $a b \in J$.
By a basic ring homomorphism property we know that $f\left(0_{R}\right)=O_{S} \in J$ which implies $0_{R} \in I$ and $f(-a)=-f(a) \in J$. By the subring theorem we conclude that I is a subring of R.
c. $(7 \mathrm{pts})$ Prove that I is an ideal in R.

Let $a \in I$ and $r \in R$. It follows that $f(a) \in J$ and $f(r) \in S$. Since J is an ideal it has the ideal property, thus $f(a) f(r)=f(a r) \in J$ and $f(r) f(a)=f(r a) \in J$ Therefore, ar $\in I$ and $r a \in I$.

Problem 5. Let $\phi: \mathbb{Z}[x] \rightarrow \mathbb{Z}_{3}$ be defined by

$$
\phi\left(a_{0}+a_{1} x+\cdots+a_{n} x^{n}\right)=\left[a_{0}\right]_{3} .
$$

a. (10 pts) Prove that ϕ is a surjective ring homomorphism

Let $[a] \in \mathbb{Z}_{3}$. Then, for the constant polynomial $a \in \mathbb{Z}[x]$ we have that $\phi(a)=[a]_{3}$. Thus, ϕ is surjective.
Let $f(x)=a_{0}+a_{1} x+\cdots+a_{m} x^{m}$ and $g(x)=b_{0}+b_{1} x+\cdots b_{n} x^{n}$ be in $\mathbb{Z}[x]$. We can assume without loss of generality that $m=n$ by adding terms with 0 coefficient Then,

$$
\begin{aligned}
\phi(f(x)+g(x)) & =\phi\left(\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) x+\cdots+\left(a_{n}+b_{n}\right) x^{n}\right. \\
& =\left[a_{0}\right]+\left[b_{0}\right] \\
& =\phi(f(x))+\phi(g(x)) \\
\phi(f(x) g(x)) & =\phi\left(\sum_{k=0}^{n+n} c_{k} x^{k}\right) \quad \text { where } \quad c_{k}=\sum_{i=0}^{k} a_{i} b_{k-i} \\
& =\left[c_{0}\right] \\
& =\left[a_{0} b_{0}\right] \\
& =\left[a_{0}\right]\left[b_{0}\right] \\
& =\phi(f(x)) \phi(g(x)) .
\end{aligned}
$$

Thus ϕ respects + and \cdot. We conclude that ϕ is a surjective homomorphism.
b. (10 pts) Show that $\operatorname{ker} \phi=\langle 3, x\rangle$ is the ideal generated by 3 and x.
(Thus, by the First Isomorphism Theorem we have that $\mathbb{Z}[x] /\langle 3, x\rangle \cong \mathbb{Z}_{3}$.)
Recall that $\langle 3, x\rangle=\{3 f(x)+x g(x): f(x), g(x) \in \mathbb{Z}[x]\}$.
Let $f(x) \in \operatorname{ker} \phi$ and write $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$. Then, $\phi(f(x))=\left[a_{0}\right]=[0]$. Thus, $3 \mid a_{0}$ and there exists $k \in \mathbb{Z}$ such that $a_{0}=3 k$. It follows that

$$
\begin{aligned}
f(x) & =a_{0}+a_{1} x+\cdots+a_{n} x^{n} \\
& =3 k+x\left(a_{1}+a_{2} x+\cdots+a_{n} x^{n-1}\right)
\end{aligned}
$$

Thus, $f(x) \in\langle 3, x\rangle$.
Let $h(x) \in\langle 3, x\rangle$ and write $h(x)=3 f(x)+x g(x)$ for some $f(x)=a_{0}+a_{1} x+\cdots+a_{m} x^{m}$ and $g(x)=$ $b_{0}+b_{1} x+\cdots b_{n} x^{n}$ be in $\mathbb{Z}[x]$. It follows that

$$
\begin{aligned}
\phi(h(x)) & =\phi(3 f(x)+x g(x)) \\
& =\phi(3) \phi(f(x))+\phi(x) \phi(g(x)) \\
& =[0] \phi(f(x))+[0] \phi(g(x)) \\
& =[0],
\end{aligned}
$$

where we use that $\phi(3)=[3]=[0]$ and $\phi(x)=[0]$. Therefore $h(x)=3 f(x)+x g(x) \in$ ker ϕ.
We conclude that ker $f=\langle 3, x\rangle$.

Extra Credit. (10 pts)

Let $n, p \in \mathbb{Z}$ be a positive, p be prime and $\langle p\rangle \subset \mathbb{Z}[x]$ denote the principal ideal generated by p. Suppose for $f(x), g(x), h(x), r(x), s(x) \in \mathbb{Z}[x]$ we have that

$$
(f(x) r(x)+g(x) s(x))+\langle p\rangle=1+\langle p\rangle
$$

and

$$
(f(x) g(x))+\langle p\rangle=h(x)+\langle p\rangle
$$

Prove that there exist $F(x), G(x) \in \mathbb{Z}[x]$ such that the following hold
i. $F(x)+\langle p\rangle=f(x)+\langle p\rangle$,
ii. $G(x)+\langle p\rangle=g(x)+\langle p\rangle$,
iii. $F(x) G(x)+\left\langle p^{n}\right\rangle=h(x)+\left\langle p^{n}\right\rangle$.

