Name

PID

Final

MTH 310, Thursday June 28, 2018

Instructions: This exam is closed notes, closed books, no calculators and no electronic devices of any kind. There are five problems worth 20 points each. If a problem has multiple parts, it may be possible to solve a later part without solving the previous parts. Solutions should be written neatly and in a logically organized manner. Partial credit will be given if the student demonstrates an understanding of the problem and presents some steps leading to the solution. Correct answers with no work will be given no credit. The back sheets may be used as scratch paper but will not be graded for credit.

1	2	3	4	5	Total

Problem 1.

a. (10 points) Compute the remainder of 2^{310} when divided by 5 . (Hint: $\left.2^{310}=\left(2^{2}\right)^{155}\right)$
b. (10 points) Let $f: \mathbb{Z}_{6} \rightarrow \mathbb{Z}_{4}$ be a homomorphism of rings with $f\left([1]_{6}\right)=[2]_{4}$. Compute $f\left([4]_{6}\right)$.
extra space for $p .1$

Problem 2. Let $p(x)=x^{3}+2 x+1$ in $\mathbb{Z}_{3}[x]$.
a. (6 pts) Show that $p(x)$ is irreducible in $\mathbb{Z}_{3}[x]$.
b. $(7 \mathrm{pts})$ Find the inverse of $\left[x^{2}+1\right]$ in $\mathbb{Z}_{3}[x] /\langle p\rangle$.
c. $(7 \mathrm{pts})$ How many elements are in the quotient ring $\mathbb{Z}_{3}[x] /\langle p\rangle$? Is $\mathbb{Z}_{3}[x] /\langle p\rangle$ a field?
extra space for p. 2

Problem 3.

a. (6 pts) Show that $x^{2}+1$ has no roots in \mathbb{Z}_{7}.
b. (7 pts) Show that if $a \neq 0$ or $b \neq 0$ in \mathbb{Z}_{7} then $a^{2}+b^{2} \neq 0$ in \mathbb{Z}_{7}.
(Hint: First, show that if $b \neq 0$ then $a^{2}+b^{2}=b^{2}\left(\left(b^{-1} a\right)^{2}+1\right)$. Then, use part a.)
c. $(7 \mathrm{pts})$ Consider the ring $\mathbb{Z}_{7}[i]:=\left\{a+i b: a, b \in \mathbb{Z}_{7}\right\}$. Recall that $i^{2}=-1$ and

$$
\begin{aligned}
(a+i b)+(c+i d) & =(a+c)+(b+d) \\
(a+i b)(c+i d) & =(a c-b d)+i(a d+b c)
\end{aligned}
$$

Prove that $\mathbb{Z}_{7}[i]$ is an integral domain. Is $\mathbb{Z}_{7}[i]$ a field?
extra space for $p .3$

Problem 4. Let $f: R \rightarrow S$ be a homomorphism of rings and $J \subset S$ be an ideal. Define the set

$$
I=\{a \in R: f(a) \in J\} \subset R
$$

a. (6 pts) Show that $\operatorname{ker} f \subset I$.
b. $(7 \mathrm{pts})$ Prove that I is a subring of R.
c. $(7 \mathrm{pts})$ Prove that I is an ideal in R.
extra space for $p .4$

Problem 5. Let $\phi: \mathbb{Z}[x] \rightarrow \mathbb{Z}_{3}$ be defined by

$$
\phi\left(a_{0}+a_{1} x+\cdots+a_{n} x^{n}\right)=\left[a_{0}\right]_{3} .
$$

a. (10 pts) Prove that ϕ is a surjective ring homomorphism
b. (10 pts) Show that ker $\phi=\langle 3, x\rangle$ is the ideal generated by 3 and x.
(Thus, by the First Isomorphism Theorem we have that $\mathbb{Z}[x] /\langle 3, x\rangle \cong \mathbb{Z}_{3}$.)
extra space for p. 5

Extra Credit. (10 pts)

Let $n, p \in \mathbb{Z}$ be a positive, p be prime and $\langle p\rangle \subset \mathbb{Z}[x]$ denote the principal ideal generated by p. Suppose for $f(x), g(x), h(x), r(x), s(x) \in \mathbb{Z}[x]$ we have that

$$
(f(x) r(x)+g(x) s(x))+\langle p\rangle=1+\langle p\rangle
$$

and

$$
(f(x) g(x))+\langle p\rangle=h(x)+\langle p\rangle
$$

Prove that there exist $F(x), G(x) \in \mathbb{Z}[x]$ such that the following hold
i. $F(x)+\langle p\rangle=f(x)+\langle p\rangle$,
ii. $G(x)+\langle p\rangle=g(x)+\langle p\rangle$,
iii. $F(x) G(x)+\left\langle p^{n}\right\rangle=h(x)+\left\langle p^{n}\right\rangle$.
extra space for e.c.

