Name: Solutions \qquad Section:
Clear your desk of everything excepts pens, pencils and erasers. Show all your work. If you have a question raise your hand and I will come to you.

1. Find the most general anti-derivative.
(a) (1 point) $f(x)=2 x^{3}+1$ on \mathbb{R} $F(x)=\frac{2}{4} x^{4}+x+C$.
(b) (1 point) $f(x)=\sin x+10 \sec x \tan x \quad$ on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ $F(x)=-\cos x+10 \sec x+C$.
2. (3 points) Estimate the value of $\sqrt{37}$ by using Newton's method for $f(x)=x^{2}-37$ and $x_{1}=6$.

Find the values of x_{2}.
$f^{\prime}(x)=2 x$
$x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}=6-\frac{36-37}{12}=6+\frac{1}{12}$.
3. (0 points) There are cases when Newton's method does not work. Can you explain why it fails to estimate the root of the equation $x^{3}-3 x+6=0$ if $x_{1}=1$.
4. Suppose you want to build a tank in the shape of a rectangular prism with a square bottom and no top using exactly $40 \mathrm{ft}^{2}$ of material. See the figure below. In this problem you will find the dimensions that maximize the volume of the tank.
(a) (1 point) Find the volume $V(x, y)$ of the tank in terms of x and y $V(x, y)=x^{2} y$.
(b) (1 point) Find an equation relating x and y to the total amount of materials $40 \mathrm{ft}^{2}$. Total Surface area $=40=x^{2}+4 x y$.
(c) (1 point) Find the volume $V(x)$ as a function of only x for $x>0$.

Use (b) to solve for y then back substitute into (a).
$y=\frac{40-x^{2}}{4 x}$.
$V(x)=x^{2}\left(\frac{40-x^{2}}{4 x}\right)=\underline{x\left(40-x^{2}\right)} 4$.
(d) (2 points) Find the values of x and y that maximize the volume.

Domain: $0<x<\infty$.
Critical points: $V^{\prime}(x)=\frac{1}{4}\left(40-3 x^{2}\right)=0 \quad \Longrightarrow \quad x= \pm \sqrt{\frac{40}{3}} .-\sqrt{40 / 3}$ is not in the domain.
The only crit. pt. is $x=\sqrt{40 / 3}$.
The y-value is found as in part $(c): \underline{y=(40-(40 / 3)) /(4 \sqrt{40 / 3})}$.

