Name: Solutions \qquad Section:
Clear your desk of everything excepts pens, pencils and erasers. Show all your work. If you have a question raise your hand and I will come to you.

1. Let $f(x)=\frac{x^{2}-4}{x^{2}-2 x}, \quad f^{\prime}(x)=\frac{-2}{x^{2}}, \quad f^{\prime \prime}(x)=\frac{4}{x^{3}}$.
(a) (1 point) Find the domain of $f(x)$.

The domain cannot have points where the denominator is 0 .

$$
0=x^{2}-2 x=x(x-2) \quad \Longrightarrow \quad x=0 \text { and } x=2 .
$$

Domain: $\underline{(-\infty, 0) \cup(0,2) \cup(2, \infty)}$.
(b) (1 point) Find all horizontal asymptotes of $f(x)$.

We want to compute the limits at infinity:

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{x^{2}-4}{x^{2}-2 x} \cdot \frac{\frac{1}{x^{2}}}{\frac{1}{x^{2}}}=\lim _{x \rightarrow \infty} \frac{1-\frac{4}{x^{2}}}{1-\frac{2}{x}}=1 \\
& \lim _{x \rightarrow-\infty} \frac{x^{2}-4}{x^{2}-2 x} \cdot \frac{\frac{1}{x^{2}}}{\frac{1}{x^{2}}}=\lim _{x \rightarrow-\infty} \frac{1-\frac{4}{x^{2}}}{1-\frac{2}{x}}=1
\end{aligned}
$$

There is one horizontal asymptote: $\underline{y=1}$.
(c) (1 point) Find all vertical asymptotes of $f(x)$.

From part (a) that vertical asymptotes can occur at $x=0$ and $x=2$.
Factor the numerator: $x^{2}-2=(x-2)(x+2)$.
$x=2$ is a removable discontinuity and NOT a vertical asymptote.
$x=0$ is the vertical asymptote.
(d) (1 point) Show that $f(x)$ has NO local maxima or minima.

By the 1st derivative test, local max/min can occur only at critical points.
$f^{\prime}(x)$ does not exists at $x=0$, but that point is not in the domain.
Set $f^{\prime}(x)=\frac{-2}{x^{2}}=0$. There are no solutions.
We conclude there are no critical points. Therefore $f(x)$ cannot have local max/min.
(e) (0 points) Sketch the graph. Use a computer to compare with your sketch.
2. (2 points) Find the slant asymptote for $f(x)=\frac{x^{2}+x}{x-1}$.

Notice that the numerator has degree 2 and denominator has degree 1 . They differ by 1 , so this indicates that the function has a slant asymptote. To find the equation of the slant asymptote do long division"

$$
\begin{array}{r}
x+2 \\
x - 1 \longdiv { x ^ { 2 } + x + 0 } \\
\frac{x^{2}-x}{2 x}+0 \\
\frac{2 x-2}{2}
\end{array}
$$

It follows that

$$
f(x)=\frac{x^{2}+x}{x-1}=(x+2)+\frac{2}{x-1}
$$

We can immediately read off the slant asymptote: $\underline{y=x+2}$. Still need to compute the limit:

$$
\lim _{x \rightarrow \infty} f(x)-(x+2)=\lim _{x \rightarrow \infty} \frac{2}{x-1}=0
$$

3. (a) (2 points) Show that: $\lim _{x \rightarrow \infty} \sqrt{x^{2}+1}-x=0$.

$$
\begin{array}{rlr}
\lim _{x \rightarrow \infty} \sqrt{x^{2}+1}-x & =\lim _{x \rightarrow \infty} \sqrt{x^{2}+1}-x \cdot \frac{\sqrt{x^{2}+1}+x}{\sqrt{x^{2}+1}+x} & \text { (multiply/divide by conjugate) } \\
& =\lim _{x \rightarrow \infty} \frac{x^{2}+1-x^{2}}{\sqrt{x^{2}+1}+x} & \\
& =\lim _{x \rightarrow \infty} \frac{1}{\sqrt{x^{2}+1}+x} & \text { (cancel the } x^{2} \text {) } \\
& =0 &
\end{array}
$$

(b) (2 points) Show that: $\lim _{x \rightarrow-\infty} \sqrt{x^{2}+1}+x=0$.

$$
\begin{array}{rlr}
\lim _{x \rightarrow-\infty} \sqrt{x^{2}+1}+x & =\lim _{x \rightarrow-\infty} \sqrt{x^{2}+1}+x \cdot \frac{\sqrt{x^{2}+1}-x}{\sqrt{x^{2}+1}-x} & \text { (multiply/divide by conjugate) } \\
& =\lim _{x \rightarrow-\infty} \frac{x^{2}+1-x^{2}}{\sqrt{x^{2}+1}-x} & \text { (cancel the } x^{2} \text {) } \\
& =\lim _{x \rightarrow-\infty} \frac{1}{\sqrt{x^{2}+1}-x} & \\
& =0 &
\end{array}
$$

(c) (0 points) Using parts (a) and (b) above, find two slant asymptotes for $f(x)=\sqrt{x^{2}+1}$. There are two slant asymptotes: $y=x$ and $y=-x$. Use a computer to graph $f(x)$.

