Name: Solutions \qquad Section:
Clear your desk of everything excepts pens, pencils and erasers. Show all your work. If you have a question raise your hand and I will come to you.

1. Let $f(x)=\frac{\sqrt{2 x^{4}-x-3}}{x^{2}-1}$.
(a) (3 points) Find all horizontal asymptotes for $f(x)$.

Your answer should be of the form of a line $y=L$ for some number L.
Compute the limits at infinity:

$$
\begin{gathered}
\lim _{x \rightarrow \infty} \frac{\sqrt{2 x^{4}-x-3}}{x^{2}-1} \cdot \frac{\sqrt{\frac{1}{x^{4}}}}{\frac{1}{x^{2}}}=\lim _{x \rightarrow \infty} \frac{\sqrt{2-\frac{1}{x^{3}}-\frac{3}{x^{4}}}}{1-\frac{1}{x^{2}}}=2 \\
\lim _{x \rightarrow-\infty} \frac{\sqrt{2 x^{4}-x-3}}{x^{2}-1} \cdot \frac{-\sqrt{\frac{1}{x^{4}}}}{\frac{1}{x^{2}}}=-\lim _{x \rightarrow-\infty} \frac{\sqrt{2-\frac{1}{x^{3}}-\frac{3}{x^{4}}}}{1-\frac{1}{x^{2}}}=-2 .
\end{gathered}
$$

Therefore, the horizontal asymptotes are $y=2$ and $y=-2$.
(b) (2 points) Find all vertical asymptotes for $f(x)$.

Your answer should be of the form: $x=c$ for some number c.
Set the denominator equal to $0, x^{2}-1=0 \Longrightarrow x=-1,1$. Since the numerator is not zero at either of these points, that means they are both vertical asymptotes.
2. Let $\quad f(x)=\frac{3 x^{2}}{x^{2}-4}, \quad f^{\prime}(x)=\frac{-24 x}{\left(x^{2}-4\right)^{2}}, \quad f^{\prime \prime}(x)=\frac{24\left(3 x^{2}+4\right)}{\left(x^{2}-4\right)^{3}}$.
(a) (1 point) Find the domain and critical points of $f(x)$.

Domain: $(-\infty,-2) \cup(-2,2) \cup(2, \infty)$
$f^{\prime}(-2), f^{\prime}(2)$ do not exist, but those values are not in the domain.
Set $f^{\prime}(x)=\frac{-24 x}{\left(x^{2}-4\right)^{2}}=0 \Longrightarrow x=0$.
Critical points: $x=0$.
(b) (2 points) Identify the intervals over which $f(x)$ is increasing and decreasing.

We need to test points in the following intervals: $(-\infty,-2) \cup(-2,0) \cup(0,2) \cup(2, \infty)$.
$f^{\prime}(-3)=\frac{24 * 3}{5^{2}}>0$
$f^{\prime}(-1)=\frac{24}{9}>0$
$f^{\prime}(1)=\frac{-24}{9}<0$
$f^{\prime}(3)=\frac{-24 * 3}{5^{2}}<0$.
By the increasing/decreasing test:
$f(x)$ is decreasing on $(0,2)$ and $(2, \infty)$.
$f(x)$ is increasing on $(-\infty,-2)$ and $(-2,2)$.
(c) (2 points) Identify the intervals over which $f(x)$ is concave up and concave down.

Set $f^{\prime \prime}(x)=\frac{24\left(3 x^{2}+4\right)}{\left(x^{2}-4\right)^{3}}=0$, there are no solutions. There are no inflection points.
Test the sign of $f^{\prime \prime}(x)$ on the intervals $(-\infty,-2) \cup(-2,2) \cup(2, \infty)$.
$f^{\prime \prime}(-3)=\frac{24\left(3^{3}+4\right)}{5^{3}}>0$
$f^{\prime \prime}(0)=\frac{24(4)}{(-4)^{3}}<0$
$f^{\prime \prime}(3)=\frac{24\left(3^{3}+4\right)}{5^{3}}>0$
By the concavity test:
$f(x)$ is concave up on $(-\infty,-2)$ and $(2, \infty)$.
$f(x)$ is concave down on $(-2,2)$.

