Name: Solutions

Section:

Clear your desk of everything excepts pens, pencils and erasers. Show all your work. If you have a question raise your hand and I will come to you.

1. (a) (1 point) Find the linearization $L(x)$ of $f(x)=\sqrt{x+14}$ at the point $x=2$.

The derivative is $f^{\prime}(x)=\frac{1}{2 \sqrt{x+14}}$. The linearization at $x=2$ is

$$
\begin{aligned}
L(x) & =f^{\prime}(2)(x-2)+f(2) \\
& =\frac{1}{8}(x-2)+4 .
\end{aligned}
$$

(b) (1 point) Use you answer in part (a) to find a linear approximation of $\sqrt{17}$.

Linear approximation: if x is close to 2 , then $f(x) \approx L(x)$.
Set $f(x)=\sqrt{x+14}=\sqrt{17}$ to find that $x=3$, that is $\sqrt{17}=f(3)$. Therefore,

$$
L(3)=\frac{1}{8}(3-2)+4=\frac{\frac{1}{8}+4 \approx \sqrt{17}}{\underline{8}}
$$

(Check the error: $\sqrt{17}=4.1231 \ldots$ compared to $4+\frac{1}{8}=4.125$. The error $|\sqrt{17}-4.125|<.02$.)
2. Let $f(x)=\frac{4}{x}+x$.
(a) (2 points) Find all critical points of $f(x)$ on the interval $(1,3)$.

Domain of $f(x):(-\infty, 0) \cup(0, \infty)$.
$f^{\prime}(x)=-\frac{4}{x^{2}}+1=0 \Longrightarrow x^{2}=4 \Longrightarrow x= \pm 2$.
$f^{\prime}(0)$ does not exists, but since 0 is not in the domain it is not a critical point.
The only critical point on the interval $(1,3)$ is at $\underline{x=2}$.
(b) (2 points) Find the absolute maximum and absolute minimum values of $f(x)$ on the interval [1,3].
$f(x)$ at the critical point: $f(2)=\frac{4}{2}+2=4$.
$f(x)$ at the endpoints: $f(1)=\frac{4}{1}+1=5$ and $f(3)=\frac{4}{3}+3$.
Compare all values: $f(2)<f(3)<f(1)$.
The absolute minimum is $f(2)=4$ and absolute maximum is $f(1)=5$.
3. (a) (1 point) Verify that $f(x)=\sin (x)$ satisfies the hypothesis of the Mean Value Theorem.
$\sin (x)$ is continuous on $\quad(-\infty, \infty)$
$\sin (x)$ is differentiable on $\quad(-\infty, \infty)$.

(b) (3 points) Apply the Mean Value Theorem to $f(x)=\sin (x)$ on the interval [a,b] to show that

$$
|\sin b-\sin a| \leq|b-a| .
$$

(Hint: $f^{\prime}(x)=\cos (x) \leq 1$ for all x.) In the figure, the line segment on the y-axis has length $|\sin b-\sin a|$, while the line segment on the x-axis has length $|b-a|$.

Notice that $f^{\prime}(x)=\cos x$. By the M.V.T. there is a point c in (a, b) such that

$$
\frac{\sin b-\sin a}{b-a}=\cos c .
$$

Take the absolute value on both sides:

$$
\begin{array}{ll}
& \left|\frac{\sin b-\sin a}{b-a}\right|=|\cos c| \leq 1 . \\
\Longrightarrow & \left|\frac{\sin b-\sin a}{b-a}\right| \leq 1 . \\
\Longrightarrow & |\sin b-\sin a| \leq|b-a| .
\end{array}
$$

