Name: Solutions \qquad Section:
Clear your desk of everything excepts pens, pencils and erasers. Show all your work. If you have a question raise your hand and I will come to you.

1. (3 points) Find an equation of the tangent line to the curve $x^{2}+y^{3}+x y=1$ at the point $P(2,-1)$.

Take the implicit derivative

$$
\begin{aligned}
\frac{d}{d x}\left(x^{2}+y(x)^{3}+x y(x)\right) & =0 \\
2 x+3 y^{2} y^{\prime}+y+x y^{\prime} & =0
\end{aligned}
$$

Plug-in the point values $x=2$ and $y=-1$

$$
4+3 y^{\prime}-1+2 y^{\prime}=0 \Longrightarrow y^{\prime}=-3 / 5
$$

Therefore the tangent line is: $y=-\frac{3}{5}(x-2)-1$.
2. (3 points) Two cars leave at an intersection. One travels north at 30 mph and the other travels east at 40 mph . How fast is the distance between them increasing after 2 hours?

Let $x(t)$ be the position of car A, $y(t)$ be the position of car B and $l(t)$ the distance between two cars. Then, its given that $x^{\prime}(t)=40 \mathrm{mph}$ and $y^{\prime}(t)=30 \mathrm{mph}$. We want $l^{\prime}(2)$. Since the cars are moving at constant speed we can calculate their future positions: $x(2)=2 * 40=80$ and $y(2)=2 * 30=60$.
The relation is given by Pythagorean's theorem: $x^{2}+y^{2}=l^{2}$. Taking the implicit derivative we get

$$
2 x x^{\prime}+2 y y^{\prime}=2 l l^{\prime} .
$$

Plug-in values and solve so l^{\prime} we have:

$$
l^{\prime}=\frac{2 * 80 * 40+2 * 60 * 30}{2 \sqrt{80^{2}+60^{2}}} \mathrm{mph} .
$$

3. (4 points) A boat is pulled into a dock by a rope attached to the bow (front end) of the boat and passing through a pulley on the dock that is 3 ft higher than the bow of the boat. If the rope is pulled in at a rate of $7 \mathrm{ft} / \mathrm{s}$, at what speed is the boat approaching the dock when it is 4 ft from the dock?

Let

$$
\begin{aligned}
x(t) & - \text { boat to dock } \\
l(t) & - \text { boat to pulley }
\end{aligned}
$$

Its given that $l^{\prime}(t)=7 \mathrm{ft} / \mathrm{s}$. We want $\left.x^{\prime}\right|_{x=4}$.
The relation is given by Pythagorean's theorem: $x^{2}+3^{2}=l^{2}$. Taking the implicit derivative: $2 x x^{\prime}=2 l l^{\prime}$.
Plug-in values and solve for x^{\prime} :

$$
x^{\prime}=\frac{7 \sqrt{4^{2}+3^{2}}}{4}=\frac{35}{4} \mathrm{ft} / \mathrm{s}
$$

