Name: Solutions
Section:
022
Clear your desk of everything excepts pens, pencils and erasers. Show all your work. If you have a question raise your hand and I will come to you.

1. (2 points) Multiple Choice. Circle the best answer. No partial credit available Let $f(x)=\frac{|x-1| \cos (x-1)}{x-1}$. What is $\lim _{x \rightarrow 1^{+}} f(x)$?
A. 1
B. 0
C. -1
D. 5
E. The limit does not exist (DNE).

Recall that if $x>1$ then $|x-1|=x-1$. Using the limit law for products we have that

$$
\begin{aligned}
\lim _{x \rightarrow 1^{+}} \frac{|x-1| \cos (x-1)}{x-1} & =\left(\lim _{x \rightarrow 1^{+}} \frac{|x-1|}{x-1}\right)\left(\lim _{x \rightarrow 1^{+}} \cos (x-1)\right) \\
& =\left(\lim _{x \rightarrow 1^{+}} \frac{x-1}{x-1}\right)\left(\lim _{x \rightarrow 1^{+}} \cos (x-1)\right) \\
& =(1) \cos (0)=1 .
\end{aligned}
$$

2. (2 points) Multiple Choice. Circle the best answer. No partial credit available Calculate: $\quad \lim _{x \rightarrow-2} \frac{x^{2}+5 x+6}{x^{2}+x-2}$
A. $-\frac{1}{4}$
B. $\frac{0}{0}$
C. $-\frac{1}{3}$
D. ∞
E. $-\infty$

Start by simplifying then look for cancellations.

$$
\begin{aligned}
\lim _{x \rightarrow-2} \frac{x^{2}+5 x+6}{x^{2}+x-2} & =\lim _{x \rightarrow-2} \frac{(x+2)(x+3)}{(x+2)(x-1)} \\
& =\lim _{x \rightarrow-2} \frac{x+3}{x-1}=\frac{-2+3}{-2-1}=-\frac{1}{3}
\end{aligned}
$$

Extra Work Space.
3. (3 points) Use the Intermediate Value Theorem to show that the equation

$$
x^{2}=\frac{1}{x}+1
$$

has at least one solution in the interval $[1, \infty)$.
Step 0. (Rewrite the equation)

$$
x^{2}-\frac{1}{x}-1=0 \quad \text { multiply by } x \Longrightarrow \quad x^{3}-1-x=0
$$

Step 1. (Define $f(x)$ and N)
Let $f(x)=x^{3}-x-1$ and notice that $f(x)$ is continuous on the interval $[1, \infty)$.
Let $N=0$. (We want to show that N is an intermediate value.)
Step 2. (Find a and b, so that N is an intermediate value.)
Let $a=1$ then $f(1)=1^{3}-1-1=-1$, thus $f(1)<0$.
Let $b=2$ then $f(2)=2^{3}-2-1=5$, thus $0<f(2)$.
It follows that $f(1)<0<f(2)$ and therefore $N=0$ is an intermediate value.
Step 3. (Use the IVT to finish)
We use the IVT to conclude that there is a solution c such that $1<c<2$ and $f(c)=0$. This same c solves the original equation.
4. (3 points) Let $f(x)=\left\{\begin{array}{ll}3-x^{2} & \text { if } x \leq 0 \\ (x-1)^{2}+a & \text { if } x>0\end{array}\right.$. Find a value for a so that f is continuous at $x=0$. Since the function is defined piecewise we should compute the left and right limits and set them equal:

$$
\begin{gathered}
\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} 3-x^{2}=3 . \\
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}}(x-1)^{2}+a=1+a .
\end{gathered}
$$

For $f(x)$ to be continuous at $x=0$ the right and left limits must be equal. Thus,

$$
3=1+a \quad \Longrightarrow \quad \underline{a=2}
$$

We finally conclude that $f(0)=3-(0)^{2}=0=\lim _{x \rightarrow 0} f(x)$ and therefore by definition $f(x)$ is continuous at $x=0$ if $a=2$.

