Name: Solutions

Section: _____

Clear your desk of everything excepts pens, pencils and erasers. Show all your work. If you have a question raise your hand and I will come to you.

1. Find the general indefinite integral

(a) (2 points)
$$\int \left(x + \frac{1}{x}\right)^2 dx$$

= $\int x^2 + 2 + \frac{1}{x^2} dx$
= $\frac{1}{3}x^3 + 2x - \frac{1}{x} + c$

(b) (2 points)
$$\int \frac{\cos \theta}{(1+\sin \theta)^2} d\theta$$

Let $u = 1 + \sin \theta$ and $du = \cos \theta d\theta$. Then,

$$\int \frac{\cos \theta}{(1+\sin \theta)^2} d\theta = \int \frac{1}{u^2} du$$
$$= -\frac{1}{u} + c$$
$$= -\frac{1}{1+\sin \theta} + c.$$

2. (2 points) Find the average value of $f(x) = \sqrt{x}$ on the interval [0, 4].

$$f_{ave} = \frac{1}{4} \int_0^4 \sqrt{x} dx$$

= $\frac{2}{12} x^{3/2} \Big|_0^4$
= $\frac{2}{12} (4)^{3/2} = \frac{4}{3}.$

- 3. A particle is moving with velocity given by $v(t) = \cos t$ (with units m/s).
 - (a) (1 point) Given that the initial position is s(0) = 0, find the position at time $t = \frac{3\pi}{2}$ seconds. We can write the above as an initial value problem:

$$\frac{d}{dt}s = \cos t, \qquad \qquad s(0) = 0.$$

The general solution is: $s(t) = \sin t + c$. The initial value is: $s(0) = 0 = \sin 0 + c \implies c = 0$. Thus, $s(t) = \sin t$ and $s(3\pi/2) = \sin(3\pi/2) = -1$ m.

(b) (2 points) What is the total distance traveled on the interval $[0, \frac{3\pi}{2}]$? We know that $v(t) = \cos t = 0$ when $t = \pi/2$. Thus:

Total distance =
$$\int_{0}^{3\pi/2} |\cos t| dt$$

=
$$\int_{0}^{\pi/2} \cos t dt - \int_{\pi/2}^{3\pi/2} \cos t dt$$

=
$$(\sin(\pi/2) - \sin 0) - (\sin(3\pi/2) - \sin(\pi/2))$$

= 3 m .

(c) (1 point) Find the average velocity on the interval $[0, \frac{3\pi}{2}]$.

$$v_{ave} = \frac{2}{3\pi} \int_0^{3\pi/2} \cos t dt$$

= $\frac{2}{3\pi} \sin t \Big|_0^{3\pi/2}$
= $\frac{2}{3\pi} (\sin(3\pi/2) - \sin 0)$
= $-\frac{2}{3\pi} m/s.$