Name: Solutions \qquad

Section:

Clear your desk of everything excepts pens, pencils and erasers. Show all your work. If you have a question raise your hand and I will come to you.

1. Find the general indefinite integral
(a) (2 points) $\int\left(x+\frac{1}{x}\right)^{2} d x$

$$
\begin{aligned}
& =\int x^{2}+2+\frac{1}{x^{2}} d x \\
& =\frac{1}{3} x^{3}+2 x-\frac{1}{x}+c
\end{aligned}
$$

(b) (2 points) $\int \frac{\cos \theta}{(1+\sin \theta)^{2}} d \theta$

Let $u=1+\sin \theta$ and $d u=\cos \theta d \theta$. Then,

$$
\begin{aligned}
\int \frac{\cos \theta}{(1+\sin \theta)^{2}} d \theta & =\int \frac{1}{u^{2}} d u \\
& =-\frac{1}{u}+c \\
& =-\frac{1}{1+\sin \theta}+c .
\end{aligned}
$$

2. (2 points) Find the average value of $f(x)=\sqrt{x}$ on the interval $[0,4]$.

$$
\begin{aligned}
f_{\text {ave }} & =\frac{1}{4} \int_{0}^{4} \sqrt{x} d x \\
& =\left.\frac{2}{12} x^{3 / 2}\right|_{0} ^{4} \\
& =\frac{2}{12}(4)^{3 / 2}=\frac{4}{3} .
\end{aligned}
$$

3. A particle is moving with velocity given by $v(t)=\cos t$ (with units m / s).
(a) (1 point) Given that the initial position is $s(0)=0$, find the position at time $t=\frac{3 \pi}{2}$ seconds. We can write the above as an initial value problem:

$$
\frac{d}{d t} s=\cos t, \quad s(0)=0
$$

The general solution is: $\quad s(t)=\sin t+c$.
The initial value is: $\quad s(0)=0=\sin 0+c \Longrightarrow c=0$.
Thus, $s(t)=\sin t$ and $s(3 \pi / 2)=\sin (3 \pi / 2)=-1 \mathrm{~m}$.
(b) (2 points) What is the total distance traveled on the interval $\left[0, \frac{3 \pi}{2}\right]$?

We know that $v(t)=\cos t=0$ when $t=\pi / 2$. Thus:

$$
\begin{aligned}
\text { Total distance } & =\int_{0}^{3 \pi / 2}|\cos t| d t \\
& =\int_{0}^{\pi / 2} \cos t d t-\int_{\pi / 2}^{3 \pi / 2} \cos t d t \\
& =(\sin (\pi / 2)-\sin 0)-(\sin (3 \pi / 2)-\sin (\pi / 2)) \\
& =3 \mathrm{~m}
\end{aligned}
$$

(c) (1 point) Find the average velocity on the interval $\left[0, \frac{3 \pi}{2}\right]$.

$$
\begin{aligned}
v_{\text {ave }} & =\frac{2}{3 \pi} \int_{0}^{3 \pi / 2} \cos t d t \\
& =\left.\frac{2}{3 \pi} \sin t\right|_{0} ^{3 \pi / 2} \\
& =\frac{2}{3 \pi}(\sin (3 \pi / 2)-\sin 0) \\
& =-\frac{2}{3 \pi} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

