Name: Solutions

Section:

Clear your desk of everything excepts pens, pencils and erasers. Show all your work. If you have a question raise your hand and I will come to you.

1. (2 points) Suppose $\int_{-1}^{2} f(x) d x=5$ and $\int_{-1}^{3} f(x) d x=7$. Find $\int_{2}^{3} 5 f(x) d x$.

By integral properties we know that:

$$
\int_{-1}^{3} f(x) d x=\int_{-1}^{2} f(x) d x+\int_{2}^{3} f(x) d x
$$

Thus, $\int_{2}^{3} f(x) d x=7-5=2$ and

$$
\int_{2}^{3} 5 f(x) d x=5 \int_{2}^{3} f(x) d x=\underline{10} .
$$

2. (2 points) Let $F(x)=\int_{\cos x}^{1} \sqrt{1-t^{2}} d t$. Find $F^{\prime}(x)$.

$$
\begin{aligned}
F^{\prime}(x) & =\frac{d}{d x} \int_{\cos x}^{1} \sqrt{1-t^{2}} d t \\
& =-\frac{d}{d x} \int_{1}^{\cos x} \sqrt{1-t^{2}} d t \\
& =-\sqrt{1-(\cos x)^{2}}(-\sin x) \\
& =\underline{\sin ^{2} x}
\end{aligned}
$$

(Flip integration bounds)
(Use FTC I and chain rule)
(Simplify/not a neccesary step)
3. (2 points) Evaluate: $\int_{1}^{2} \frac{t^{3}+\sqrt{t}}{t} d t$.

$$
\begin{array}{rlr}
\int_{1}^{2} \frac{t^{3}+\sqrt{t}}{t} d t & =\int_{1}^{2} t^{2}+t^{-1 / 2} d t \\
& =\int_{1}^{2} t^{2} d t+\int_{1}^{2} t^{-1 / 2} d t & \text { (integral property) } \\
& =\left.\frac{1}{3} t^{3}\right|_{1} ^{2}+\left.2 t^{1 / 2}\right|_{1} ^{2} \tag{FTCII}\\
& =\frac{7}{3}+2(\sqrt{2}-1)
\end{array}
$$

4. A particle is moving with an acceleration given by $a(t)=\sin t$ (with units $\mathrm{m} / \mathrm{s}^{2}$).
(a) (2 points) Given that the initial velocity is $v(0)=1$, find $v(\pi)$ the velocity at time $t=\pi$. We can rewrite this as an Initial Value Problem: Find $v(t)$ where

$$
\frac{d v}{d t}=\sin t, \quad v(0)=1
$$

The most-general solution is: $v(t)=-\cos t+C$.
Solve for $C: v(0)=-\cos 0+C=1 \Longrightarrow C=2$.

$$
v(t)=-\cos t+2 ; \quad v(\pi)=-\cos \pi+2=\underline{3 \mathrm{~m} / \mathrm{s}}
$$

(b) (2 points) Given that the initial position is $x(0)=0$, find $x(\pi)$ the position at time $t=\pi$. We can rewrite this as an Initial Value Problem: Find $x(t)$ where

$$
\frac{d x}{d t}=-\cos t+2 ; \quad x(0)=0
$$

The most-general solution is: $x(t)=-\sin t+2 t+C$.
Solve for $C: x(0)=-\sin 0+2(0)+C=0 \Longrightarrow C=0$.

$$
x(t)=-\sin t+2 t ; \quad x(\pi)=-\sin \pi+2 \pi=\underline{2 \pi \mathrm{~m}} .
$$

