MTH 132: Sketch the graph

Instructor: Matthew Cha

October 29, 2018

Example. Let

$$
f(x)=\frac{x^{2}+7}{x-4}, \quad f^{\prime}(x)=\frac{x^{2}-8 x-7}{(x-4)^{2}}, \quad f^{\prime \prime}(x)=\frac{46}{(x-4)^{3}} .
$$

Sketch the graph of $f(x)$.

Solution.

1. Domain: $(-\infty, 4) \cup(4, \infty)$ since if $x=4$ then the denominator is 0 .

Critical points: Set $f^{\prime}(x)=\frac{x^{2}-8 x-7}{(x-4)^{2}}=0$. The solutions are given by the quadratic formula: $x=$ $(1 / 2)(8 \pm \sqrt{64+28})=4 \pm \sqrt{23} \approx-.8,8.8$.
2. Local max/min: Test sign of f^{\prime} in the intervals $(-\infty, 4-\sqrt{23}),(4-\sqrt{23}, 4),(4,4+\sqrt{23})$, and $(4+\sqrt{23}, \infty)$.

$$
f^{\prime}(-1)=\frac{2}{9}>0, \quad f^{\prime}(1)=\frac{-14}{9}<0, \quad f^{\prime}(5)=-22<0, \quad f^{\prime}(10)=\frac{13}{36}>0
$$

Increasing/decreasing test: $f(x)$ is increasing on $(4,4+\sqrt{23})$ and $(4+\sqrt{23}, \infty)$ and $f(x)$ is decreasing on $(-\infty, 4-\sqrt{23})$ and $(4-\sqrt{23}, 4)$.

1st derivative test: $f(4-\sqrt{23})$ is local max and $f(4+\sqrt{23})$ is local min.
3. Concavity: Set $f^{\prime \prime}(x)=0$, there are no solutions. Test the sign of $f^{\prime \prime}$ on $(-\infty, 4)$ and $(4, \infty)$.

$$
f^{\prime \prime}(0)=\frac{46}{-4^{3}}<0, \quad f^{\prime \prime}(5)=46>0
$$

Concavity test: $f(x)$ is concave down on $(-\infty, 4)$ and $f(x)$ is concave up on $(4, \infty)$.
4. Asymptotes: There is a vertical asymptote at $x=4$.

There is no horizontal asymptote.
There is a slant asymptote since the difference of order in the numerator and denominator is 1 . Use long division to compute:

$$
\begin{array}{r}
x+4 \\
x-4 x^{2}+0 x+7 \\
\frac{x^{2}-4 x}{4 x}+7 \\
\frac{4 x-16}{23}
\end{array}
$$

Therefore, $f(x)=(x+4)+\frac{23}{x-4}$.

$$
\lim _{x \rightarrow \infty}[f(x)-(x+4)]=\lim _{x \rightarrow \infty} \frac{23}{x-4}=0
$$

$y=x+4$ is the slant asymptote.

