MTH 132: Exam 2 Study Guide

Instructor: Matthew Cha

November 14, 2018

Main topics: Only a supplement for your study and NOT meant to be a complete list of topics. Make sure you know the precise textbook definitions and formulas. Some examples are given; these are taken from the textbook, lectures, quizzes and old exams.

Curve Sketching: (Sections 3.1-5)

1. A critical point is a number c in the domain of $f(x)$ such that either $f^{\prime}(c)$ D.N.E. or $f^{\prime}(c)=0$.
2. Extreme Value Theorem: $f(x)$ continuous on $[a, b]$ has absolute maximum and absolute minimum.
3. Closed Interval Strategy: $f(x)$ is continuous on $[a, b]$ (Know how to find the domain of functions).
i.) Find the domain and critical points. Compute the value of $f(x)$ at critical points.
ii.) Find $f(a)$ and $f(b)$ (check the endpoint values).
iii.) Compare all values: Largest is the absolute maximum and smallest is the absolute minimum. e.g. - Find the absolute max and min of $f(x)=x^{3}-12 x$ on $[-5,2]$.

- Find the domain and critical points of $f(x)=\frac{x^{2}-4}{x^{2}-x-2} ; f^{\prime}(x)=\frac{x-2}{x+1}$.

4. Mean Value Theorem: (on formula sheet) Let $f(x)$ be continuous on $[a, b]$ and differentiable on (a, b). Then, there is a number c in (a, b) such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$.
5. Increasing/Decreasing Test: If $f^{\prime}(x)>0$ then $f(x)$ increasing. If $f^{\prime}(x)<0$ then $f(x)$ decreasing.
6. 1st Derivative Test: Let c be a critical point.
i.) If $f^{\prime}(x)$ changes from + to - , then $f(c)$ is a local maximum.
ii.) If $f^{\prime}(x)$ changes from - to + , then $f(c)$ is a local minimum.
iii.) If $f^{\prime}(x)$ does not change sign, then $f(c)$ is neither a local max or min.
7. Inflection points and concavity test: If $f^{\prime \prime}(x)>0$ then concave up. If $f^{\prime \prime}(x)<0$ then concave down.
8. Asymptotes:
i.) Horizontal: e.g. $\lim _{x \rightarrow \infty} \frac{x^{2}-1}{3 x^{2}+x+1}=\frac{1}{3} ; \quad \lim _{x \rightarrow \infty} \sqrt{x^{2}+1}-x=0$.
ii.) Vertical: e.g. $f(x)=\frac{x^{2}-4}{x^{2}-x-2}$ has only one vertical asymptote at $x=1$.
iii.) Slant: e.g. $f(x)=\frac{x^{3}-1}{x^{2}-4}$ (power on top is one bigger than bottom). Long division to compute.
9. Symmetry: even $f(x)=f(-x)$; odd $f(x)=-f(-x)$; periodic $f(x)=f(x+p)$. e.g. - Show that $f(x)=x \cos x$ is odd.

- Show that $f(x)=\frac{x^{2}}{x^{4}-2 x^{2}}$ is even.

10. Identify the graphs of $f(x), f^{\prime}(x)$ and $f^{\prime \prime}(x)$. e.g. Webwork 3.3.14, 2.7.11, 2.7.12

Applications of derivatives (Sections 2.9, 3.7, 3.8, 3.9)

1. Linear approximation: Linearization of $f(x)$ at $x=a$ is $L(x)=f^{\prime}(a)(x-a)+f(a)$.
i.) Near $x=a$ we can use linear approx. $L(x) \approx f(x)$. e.g. Use a linear approximation to estimate $\sqrt{17}$. (Ans: $\sqrt{17} \approx 4+\frac{1}{8}$.)
ii.) Differential: $\Delta f \approx d f=f^{\prime}(x) d x$ approximates the change in f. e.g. Use differentials to estimate change in $y=-\frac{1}{x}$ as x moves from 2 to 2.5. (Ans: $d y=\frac{1}{8}$.)
2. Optimization: Method to solve word problems.
i.) Draw diagram and label quantities/variables that are changing.
ii.) Write all relations/given information about variables. Eliminate variables.
iii.) Apply closed interval strategy or 1 st derivative test to find optimal values.
3. Newton's method: Given $f(x)=0$ and x_{1}, then $x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}$. e.g. Use NM to approximate $\sqrt[5]{33}$.
4. Anti-derivatives: $F(x)$ is an anti-derivative of $f(x)$ if $F^{\prime}(x)=f(x)$.
i.) Most-general anti-derivative on an interval: $F(x)+C$
ii.) Power rule: $f(x)=x^{n}$ for $n \neq-1$ then $F(x)=\frac{1}{n+1} x^{n+1}$.
iii.) Trig derivatives to remember:

$$
\frac{d}{d x} \sin x=\cos x ; \quad \frac{d}{d x} \cos x=-\sin x ; \quad \frac{d}{d x} \tan x=\sec ^{2} x ; \quad \frac{d}{d x} \sec x=\sec x \tan x
$$

iv.) Relationship between position, velocity and acceleration: $a(t)=\frac{d}{d t} v, \quad v(t)=\frac{d}{d t} s$. $v(t)$ is an anti-derivative of $a(t) . s(t)$ is an anti-derivative of $v(t)$.
5. Initial Value Problems: e.g. Solve $\frac{d f}{d x}=x^{2}-1 ; f(3)=-1$. Answer. $f(x)=\frac{1}{3} x^{3}-x-7$.
$\underline{\text { Areas, Sums and Integral (Sections 4.1, 4.2, 4.3) }}$

1. Sigma notation: $\sum_{i=1}^{n} a_{i}=a_{1}+a_{2}+\ldots+a_{n-1}+a_{n}$. Also, know properties of sigma.
2. Left/Right Riemann Sums for $f(x)$ on $[a, b]$: Let $\Delta x=\frac{b-a}{n}$ and $x_{i}=a+i \Delta x$ then
$R_{n}=\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x ; \quad L_{n}=\sum_{i=1}^{n} f\left(x_{i-1}\right) \Delta x \quad(n=$ Number of rectangles used. $)$
e.g. Estimate the net area of $f(x)=-x^{2}+8 x+9$ on $[0,8]$ using $n=4$ rectangles.
3. Upper/Lower sums: For the height use the max/min in each interval
4. Summation formulas (on formula sheet): $\sum_{i=1}^{n} i, \quad \sum_{i=1}^{n} i^{2}$.
5. Definite integral (net area): $f(x)$ continuous on $[a, b]$ then $\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x$.
6. Use geometry to compute integrals: e.g $\int_{0}^{a} x d x=\frac{1}{2} a^{2}$ (triangle), $\quad \int_{-1}^{1} \sqrt{1-x^{2}} d x=\pi / 2$ (circle).
7. Know the integral properties: e.g $\int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x ; \quad \int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x=\int_{a}^{b} f(x) d x$.
8. Comparison properties: If $m \leq f(x) \leq M$ then $m(b-a) \leq \int_{a}^{b} f(x) d x \leq M(b-a)$.
9. Fundamental Theorem of Calculus:

Part I: $\quad \frac{d}{d x}\left(\int_{a}^{x} f(t) d t\right)=f(x) \quad$ e.g. Let $F(x)=\int_{x}^{x^{4}} t \sec t d t$ then $F^{\prime}(x)=x^{4} \sec \left(x^{4}\right)\left(4 x^{3}\right)-x \sec x$.
Part II: If $f(x)=F^{\prime}(x)$ then $\int_{a}^{b} f(x) d x=F(b)-F(a) . \quad$ e.g. $\int_{0}^{1} \frac{t^{3}-\sqrt{t}}{t} d t=\frac{1}{3}-2$.

