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Abstract: This article presents a novel concept, the minimal molecular surface (MMS), for the theoretical model-

ing of biomolecules. The MMS can be viewed as a result of the surface free energy minimization when an apolar

molecule, such as protein, DNA or RNA is immersed in a polar solvent. Based on the theory of differential geome-

try, the MMS is created via the mean curvature minimization of molecular hypersurface functions. A detailed nu-

merical algorithm is presented for the practical generation of MMSs. Extensive numerical experiments, including

those with internal and open cavities, are carried out to demonstrated the proposed concept and algorithms. The pro-

posed MMS is typically free of geometric singularities. Application of the MMS to the electrostatic analysis is con-

sidered for a set of twenty six proteins.
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Introduction

Molecular models have widespread applications in modern sci-

ence and technology. The atom and bond model of molecules

was proposed by Corey and Pauling in 1953,1 and continues to

be a cornerstone in physical science. The regular polyhedral and

periodic lattice model plays an important role in crystallography

and solid state physics. The molecular and atomic orbital models

provide a visual basis for a quantum mechanical description of

molecules and their dynamics. The difficulty of modeling and

visualization of large complex biomolecules has motivated the

development of a variety of physical and graphical models.

Among them, the molecular surface (MS)2 is one of the most

important models in molecular biology. The stability and solu-

bility of macromolecules, such as proteins, DNAs and RNAs,

are determined by how their surfaces interact with solvent and

other surrounding molecules. Therefore, the structure and func-

tion of macromolecules depend on the features of their mole-

cule-solvent interfaces.3 The MS is defined by rolling a probe

sphere with a given radius around the set of atomic van der

Waals spheres.2,4,5 It has been applied to protein folding,6 pro-

tein-protein interfaces,7 protein surface topography,3 oral drug

absorption classification,8 DNA binding and bending,9 macromo-

lecular docking,10 enzyme catalysis,11 calculation of solvation

energies,12 and molecular dynamics.13 The concept of molecule

and solvent interfaces is of paramount importance to the implicit

solvent models14,15 and polarizable continuum methods.16 MSs

are generated by a variety of methods, including use of the

Gauss-Bonnet theorem,17,18 overlapped multiple spheres,19 space

transformation,20 alpha shape theory,21 the contour-buildup algo-

rithm,22 variable probe radius23 and parallel methods.24 While

most methods represent the resulting MS by triangulation,25–27 a

Cartesian grid based method was proposed by Rocchia et al.28 A

partial differential equation approach of MS was proposed by

Wei et al.29 However, the existing biomolecular surface models

encounter theoretical and computational difficulties, due to the

possible presence of self-intersecting surfaces, cusps, and other

singularities.25,26,30,31 Moreover, such models are inconsistent

with the surface free energy minimization, which likely leads

to a minimal surface separating the apolar biomolecule from a

polar solvent.

Because of the energy minimization principle, minimal surfa-

ces are omnipresent in nature. Their study has been a fascinating

topic for centuries.32–34 French geometer, Meusnier, constructed

the first non-trivial example, the catenoid, a minimal surface that

connects two parallel circles, in the 18th century. In the 1760s,

Lagrange discovered the relation between minimal surfaces and

a variational principle, which is still a cornerstone of modern

mechanics. Plateau studied minimal surfaces in soap films in the

mid-nineteenth century. In liquid phase, materials of largely dif-

ferent polarizabilities, such as water and oil, do not mix, and the

material in smaller quantity forms ellipsoidal drops, whose sur-

faces are minimal subject to the gravitational constraint. The

self-assembly of minimal cell membrane surfaces in water has
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been discussed.35 Curvature effects in static cell membrane

deformations have been considered by Du et al.36 The Schwarz

P minimal surface is known to play a role in periodic crystal

structures.37 The formation of b-sheet structures in proteins is

regarded as the result of surface minimization on a catenoid.38

A minimal surface metric has been proposed for the structural

comparison of proteins.39 However, to the best of our knowl-

edge, a natural minimal surface that separates a less polar ma-

cromolecule from its polar environment such as the water sol-

vent has not been considered yet.

The generation of minimal surfaces with given boundary con-

straints can be pursued using Matlab or Mathematica.40 Evolu-

tion equation approaches were also proposed to generate mini-

mal surfaces with predetermined boundaries.41,42 However, there

is no algorithm available that generates minimal surfaces con-

strained by obstacles, such as arbitrarily distributed atoms in

biomolecules, to the best of our knowledge.

The objectives of the present article are twofold, i.e., to pro-

pose a novel concept, the minimal molecular surface (MMS),

for the modeling of biomolecules, and to develop a new algo-

rithm for the practical generation of MMSs under biomolecular

constraints. Since the surface free energy is proportional to the

surface area, an MMS contributes to the molecular stability in

solvent. Therefore, there must be an MMS associated with each

stable macromolecule in its polar environment, and our differen-

tial geometric approach appears to produce the desired results. A

brief report of the proposed concept and algorithm was pre-

sented elsewhere.43,44

This paper is organized as follows. In Theoretical Modeling,

we provide the theoretical modeling of the MMS. A hypersur-

face representation of biomolecular system is defined. The nor-

mal and mean curvature of the hypersurface is evaluated and

used to evolve the hypersurface. Methods and algorithms are

described in Methods and Algorithms. The hypersurface function

is initialized based on atomic constraints, and evolved via the

mean curvature minimization. A level surface is extracted from

the steady state hypersurface function to obtain the MMS.

Results and Discussion is devoted to numerical results and dis-

cussions. We validate the proposed method via several numeri-

cal experiments. The capability of representing open and internal

cavities is demonstrated. We show that the proposed method is

free of typical geometric singularities. Electrostatic analysis is

carried out with the proposed MMS.

Theoretical Modeling

Hypersurface and its Mean Curvature

Consider a C2 immersion f : U ? R4, where U � R3 is an open

set. Here f(u) 5 (f1(u), f2(u), f3(u), f4(u)) is a hypersurface ele-

ment (or a position vector), and u 5 (u1, u2, u3) [ U.
Tangent vectors (or directional vectors) of f are Xi ¼ @f

@ui
. The

4 3 3 Jacobian matrix of the mapping f is given by Df 5 (X1,

X2, X3).

The first fundamental form is a symmetric, positive semi-

definite metric tensor of f, given by I: 5 (gij) 5 (Df)T � (Df). Its
matrix elements can also be expressed as gij 5 hXi, Xji, where
h , i is the Euclidean inner product in R4, i, j 5 1,2,3.

Let v(u) be the unit normal vector given by the Gauss map

v : U ? S3,

vðu1; u2; u3Þ :¼ X13X23X3=kX13X23X3k 2 ?u f ; (1)

where the cross product in R4 is a generalization of that in R3.

Here, \uf is the normal space of f at point p 5 f(u). The vector

v is perpendicular to the tangent hyperplane Tuf to the surface at

p. Note that Tuf � \uf 5 Tf(u)R
3, the tangent space at p. By

means of the normal vector v and tangent vector Xi, the second

fundamental form is given by

IIðXi;XjÞ ¼ ðhijÞ ¼ � @v

@ui
;Xj

� �� �
: (2)

The mean curvature can be calculated from

H ¼ 1

3
hijg

ji; (3)

where we use the Einstein summation convention, and gij 5
g�1
ij .

Let U � R3 be an open set and suppose U is compact with

boundary qU. Let fe : U ? R4 be a family of hypersurfaces

indexed by e [ 0, obtained by deforming f in the normal direc-

tion according to the mean curvature. Explicitly, we set

feðx; y; zÞ :¼ f ðx; y; zÞ þ eHvðx; y; zÞ: (4)

We wish to iterate this leading to a minimal hypersurface, that

is H 5 0 in all of U, except possibly where barriers (atomic

constraints) are encountered.

For our purposes, let us choose f(u) 5 (x, y, z, S), where S(x,
y, z) is a function of interest. We have the first fundamental

form:

ðgijÞ ¼
1þ S2x SxSy SxSz
SxSy 1þ S2y SySz
SxSz SySz 1þ S2z

0
@

1
A: (5)

The inverse matrix of (gij) is given by

ðgijÞ ¼ 1

g

1þ S2y þ S2z �SxSy �SxSz
�SxSy 1þ S2x þ S2z �SySz
�SxSz �SySz 1þ S2x þ S2y

0
@

1
A; (6)

where g 5 Det(gij) 5 1 1 S2x 1 S2y 1 S2x is the Gram determi-

nant. The normal vector can be computed from eq. (1)

v ¼ ð�Sx;�Sy;�Sz; 1Þ= ffiffiffi
g

p
; (7)

The second fundamental form is given by

ðhijÞ ¼ 1ffiffiffi
g

p Sxixj

� �
; (8)

i.e., the Hessian matrix of S.
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We consider a family fe 5 (x, y, z, Se), where

Seðx; y; zÞ ¼ Sðx; y; zÞ þ eH
1ffiffiffi
g

p : (9)

The explicit form for the mean curvature can be written as

H ¼ 1

3
r � rSffiffiffi

g
p

� �
: (10)

Thus, we arrive at the following evolution scheme

Seðx; y; zÞ ¼ Sðx; y; zÞ þ e
3

ffiffiffi
g

p r � rSffiffiffi
g

p
� �

: (11)

To balance the growth rate of the mean curvature operator, we

replace H by 3gH in eq. (11), which is permissible since g is

nonsingular. This leads to the final scheme

Seðx; y; zÞ ¼ Sðx; y; zÞ þ e
ffiffiffi
g

p r � rSffiffiffi
g

p
� �

: (12)

Surface Free Energy Minimization

Let us denote the surface free energy of a molecule as E 5
$Ur(x, y, z)dX, where U encloses the molecule, r the energy

density and dX ¼ ffiffiffi
g

p
dxdydz. The energy minimization via the

first variation leads to the Euler Lagrange equation,

@e

@S
� @

@x

@e

@Sx
� @

@y

@e

@Sy
� @

@z

@e

@Sz
¼ 0; (13)

where e ¼ r
ffiffiffi
g

p
. The explicit form of r(x, y, z) is required in

practical applications. For a homogeneous surface, r 5 r0, a

constant, eq. (13) leads to the vanishing of the mean curvature

r0r � �rSffiffi
g

p
� ¼ 3r0H ¼ 0 everywhere except for a set of pro-

tected points. This result is consistent with the evolution

eq. (12).

Methods and Algorithms

The procedure of the present algorithm is the follows. First we

minimize the mean curvature H of a hypersurface function S,
while protecting the molecular van der Waals surfaces. Then we

extract the desirable MMS from the hypersurface function by

choosing a level surface of S.

Minimization of the Mean Curvature

We directly iterate eq. (12) so that Se(x, y, z) ? S(x, y, z) and

H ? 0, except for the constraint surface. For a given set of

atomic coordinates, we prescribe a step function initial value for

S(x, y, z), i.e., a nonzero constant S0 inside a sphere of radius ~r
about each atom and zero elsewhere. Alternatively, a Gaussian

or other smooth initial value can be placed around each atomic

center. The value of S(x, y, z) is updated in the iteration except

for obstacles, i.e., a set of boundary points given by the collec-

tion of all of the van der Waals sphere surfaces or any other

desired atomic sphere surfaces. The mean curvature, H, can be

approximated by any standard numerical method. For simplicity,

we use the standard second order central finite difference.

Because of the stability concerns, we choose e < h2

2
, where h is

the smallest grid spacing. The iteration converges Se(x, y, z) ?
S(x, y, z) whenever H ? 0 everywhere except for certain pro-

tected boundary points where the mean curvature takes constant

values. The MMS is differentiable and consistent with surface

free energy minimization.

The hypersurface minimization process can be formulated as

a mean curvature (geometric) flow45–52

@S

@t
¼ 3

ffiffiffi
g

p
H ¼ ffiffiffi

g
p r � rSffiffiffi

g
p

� �
: (14)

Many variants of eq. (14) can be found in the literature. Since at

the hypersurface boundary, the Gram determinant g is dominant

by k!Sk2, it does not make much difference in practice to mod-

ify eq. (14) as

@S

@t
¼ krSkr � rS

krSk
� �

: (15)

Other time evolution equations that lead to minimize the mean

curvature or some approximation of the mean curvature will

work too.

An alternative approach can be pursued via the minimization

of the mean curvature of the hypersurface function in the frame-

work of the first variation as discussed in surface free energy

minimization. This can be done by coupling with appropriate

constraints given by the set of extrema from the molecular van

der Waals surfaces. The corresponding Euler–Lagrange equation

provides the condition of extremality, and the equation for the

minimal molecular hypersurface. The (nonlinear) mean curvature

expression can be linearized and discretized as an elliptic equa-

tion, and a minimizing sequence can be generated via iterating

solvers. This approach is somewhat related to previous theories,

such as the Mumford-Shah variational functional,53 and the

Euler–Lagrange formulation of surface variation.54–61

Isosurface Extraction

The hypersurface S(x, y, z) obtained via the mean curvature min-

imization is not the MMS that we seek. Instead, it gives rise to

a family of level surfaces, which include the desired MMS. It

turns out that S(x, y, z) is very flat away from the MMS, while

it sharply varies at the MMS. In other word, S(x, y, z) is virtu-

ally a step function at the desirable MMS. Therefore, it is easy

to extract the MMS as an isosurface, S(x, y, z) 5 C. It is con-

venient to choose C 5 (1 2 d)SI, where SI is the initial ampli-

tude, and d [ 0 is a very small number and can be calibrated

by standard tests. Computationally, by taking SI 5 1000, satis-

factory results can be attained by using d values ranging from
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0.004 to 0.01. Mathematically, this process is closely related to

the level set algorithm devised by Osher and Sethian.59,62,63

Numerically, isosurface extraction can be done with existing

software, such as Matlab and VMD. In fact, finding efficient

algorithms for isosurface extraction is an active research topic

for volume visualization or scientific visualization. The marching

cubes algorithm64 and its improvements65–70 can be adopted for

the purpose of constructing a stand-alone software for the MMS

generation.

Results and Discussion

Validation

To validate the proposed theory and algorithm, we first consider

the generation of the MMS of a diatomic molecule. We set the

atomic radius as r and the distance between the atomic centers as

L. Let the atomic centers be c1 ¼ ð� L
2
; 0; 0Þ and c2 ¼ ðL

2
; 0; 0Þ. We

take an enlarged domain to be D 5 {(x, y, z) : |(x, y, z) 2 ci|\ ~r,
for i 5 1, 2}, where ~r[ L/2[ r [see Fig. 1(a) for an illustration].

First we consider a step function initial value S 5 SI 5 1000 in the

domain D and S 5 0 elsewhere. After iterations, the steady state

solution of S(x, y, z) is a function on a 3D domain. A cross section

of the graph of S is depicted in Figure 1b. As discussed earlier, S(x,
y, z) is virtually a step function at the desired MMS, which sug-

gests the uniqueness of the solution. We choose the level set S(x, y,
z) 5 0.99SI to obtain the MMS shown in Figure 1c. It consists of

parts of the surfaces of the two atoms, i.e., contact surfaces, and a

catenoid, i.e., a reentrant surface that connects the two atoms.

Although the shape of the present MMS looks similar to the MS of

a diatom, we note that the generation procedure of the MMS is dif-

ferent from that for the MS, in which a reentrant surface is gener-

ated by rolling a probe.

Although the formation of the connected MMS is automatic,

an initial connected domain is an important constraint. We found

that if we choose r\ ~r \ L/2, two isolated spheres will not join

to form the MMS. Therefore initial connectivity (~r [ L/2) is

crucial for the formation of MMSs.

It is important to know how an initially connected level set

of S(x, y, z) will eventually separate into two regions when L is

sufficiently large. For two atoms with the same radius r1 5 r2 5
r, lower and upper bounds of the MMS area can be taken to be

4pr2 and 8pr2, respectively for the diatomic system. When L is

small, the MMS consists of a catenoid and parts of two spheres,

and the MMS area is smaller than the upper bound, see Figure

2(a1). When the separation length L is gradually increased, the

MMS area grows continuously, while the neck of the MMS sur-

face becomes thinner and thinner, see Figure 2(a2) and 2(a3). At

a critical distance Lc [ 2r, the MMS breaks into two disjoint

pieces. The present study predicts Lc ^ 2.426r. In fact, this

result is robust with respect to initial domain D as long as

~r > Lc
2
’ 1:213r. We actually take ~r to be slightly larger than

1.213r, say ~r 5 1.3r, in our computations. We found that a

Gaussian initial value gives the same prediction. Note that

although the topological change of the MMS seems to be abrupt

at the critical distance because of the break of the catenoid, the

MMS surface area is actually a continuous function of the sepa-

rating distance L. The continuity of the MMS surface area will

be discussed rigorously elsewhere.

Diatomic systems with different radii are also considered in

Figure 2. Similar transition patterns can be seen in these sys-

tems. By comparing the critical states among different cases, a

linear dependence of the critical value Lc with respect to r1 and

r2 can be identified as Lc ^ 1.213(r1 1 r2). As the MS area is

proportional to the surface Gibbs free energy, the critical value

(Lc) might provide an indication of the molecular disassociation

critic and could be used in molecular modeling.

We next consider the MMS of the benzene molecule which

consists of six carbon atoms and six hydrogen atoms. The carbon

atoms are in sp2 hybrid states with delocalized p stabilization.

The MMSs of the benzene molecule with van der Waals radii

(rvdW) and other atomic radii are depicted in Figure 3. By using

the van der Waals radii, a bulky MMS is obtained. A topologi-

cally similar while smaller MMS is formed using the set of stand-

ard atomic radii. No ring structure is seen until the atomic radii

are reduced by a factor of 0.9, see Figure 3c. Clearly, all atoms

are connected via catenoids. Eventually, the MMS decomposes

into 12 pieces when radii are further reduced to slightly below

their critical values, see Figure 3d. This again confirms to our pre-

diction of critical separation distance Lc ^ 1.213(r1 1 r2).

Cavities

Inaccessible internal cavities and open cavities (pockets) are

commonly encountered in macromolecules. It is thus interesting

and important to explore the representation of these cavities in

Figure 1. MMS generation. (a) Illustration of r, ~r, and L at a cross section z 5 0; (b) S(x, y, z 5 0)

shows a family of level surfaces. (c) The isosurface extracted from S 5 990. [Color figure can be

viewed in the online issue, which is available at www.interscience.wiley.com.]
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the present MMS algorithm. As an example, we consider a

buckyball molecule (buckminsterfullerene C60). The buckyball

has 12 pentagons which do not share any edge. To study the

performance of our algorithm for open cavities, we create a C54

‘‘molecule’’ by removing 6 carbon atoms, i.e., one hexagon

being excluded. However, the coordinates of remaining 54 atoms

are unchanged.

Without further constrains, the directly generated MMSs for both

original and open buckyballs are found to be free of cavities, because

creating a cavity will lead to a larger total surface area. To capture

inaccessible and open cavities, certain geometric constraints have to

be introduced. From the biological point of view, the surface of a

cavity is an interface that encloses foreign objects, such as solvent

molecules or ligands. Therefore, the cavity surface is subject to the

minimization. A simple way to create a domain for the solvent is to

make use of the solvent accessible surface4 which is mapped out by

rolling a probe of radius rp on the van der Waals surface of the mole-

cule. Therefore, the domain outside the solvent accessible surface4

can be regarded as the solvent domain, where a zero initial value

S(x, y, z)5 SI is prescribed and the initial value at the solvent acces-
sible surface is protected during the iteration. In this approach, mini-

mal solvent surfaces (MSSs) are found for internal cavities. For

open cavities, a combination of minimal molecular outer surfaces

and minimal solvent inner surfaces is obtained. The total surface

area is minimal under the designed constraint. In this approach, we

have to choose rp [ ~r 2 r. Obviously, other choices of the cavity

constraints are possible. However, a detailed discussion of these pos-

sibilities is beyond the scope of the present work.

In the present study, we set rp 5 1.5 Å. The MMSs of the

buckyball are shown in Figure 4. The first row shows the exterior

MMSs. While the second row depicts a cross section of the MMSs.

Different van der Waals radii r are used in our plot. At a small

radius r 5 0.5Å, the MMS breaks into 60 small atomic spheres.

Clearly, the inner cavity is very small at r 5 1.7Å, but becomes

large as r is reduced, see the second row of Figure 4. In this case,

the surface of the inner cavity is a minimal solvent surface.

Figure 2. The MMS of a diatomic molecule with r1 5 r and different r2 and at different separation

lengths L. [Color figure can be viewed in the online issue, which is available at www.interscience.

wiley.com.]
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We next study behavior of an open cavity using the fictitious

molecule C54 with rp 5 1.5. Figure 5 presents our results. Simi-

lar to the last case, the first row shows exterior views of the

MMSs, while the second row provides cross sectional views.

The exterior views clearly indicate the removal of a hexagon.

As can be seen from the second row, there is an internal cavity

when r is large. However, an open cavity is gradually formed at

the site of the hexagon as r decreases. Both internal and open

cavities enlarge and finally merge into one as r is sufficiently

small, see Figure 5(b3). It is interesting to note that there is a

smooth transition from the minimal molecular outer surface to

the minimal solvent inner surface in Figure 5 (a3) and 5(b3).

Singularities

Earlier biomolecular surfaces, such as the van der Waals surface

and the solvent accessible surface, are nonsmooth. The MS was

introduced to create smooth surfaces by smoothly joining atomic

surfaces with the probe surface. However, the MS is not smooth

everywhere (it is not C1). There are self-intersecting surfaces,

cusps, and other singularities in the MS definition. These non-

smooth features cause numerical instability in the calculations of

electrostatic potentials and forces using implicit solvent models.

Moreover, singularities are obstacles to MS generators.25,26,30,31

In the present work, we shall carefully examine whether similar

singularities occur in our MMS definition. To this end, we carry

Figure 3. The MMS of benzene with van der Waals radii and scaled atomic radii. (a) Van der Waals

radii, rC 5 1.7 Å and rH 5 1.2 Å; (b) Atomic radii, rC 5 0.7 Å and rH 5 0.38 Å; (c) Scaled atomic

radii, rC 5 0.63 Å and rH 5 0.34 Å; (d) Scaled atomic radii, rC 5 0.56 Å and rH 5 0.30 Å. [Color

figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

Figure 4. The MMS of the buckyball with van der Waals radius and scaled atomic radius. (a1) Van

der Waals radius, r 5 1.7 Å; (a2) Atomic radii, r 5 1.0 Å; (a3) Scaled atomic radii, r 5 0.6 Å; (a4)

Scaled atomic radii, r 5 0.5 Å. (b1), (b2), and (b3) show, respectively, the MMS of the same bucky-

ball as in (a1), (a2), and (a3), with half of the data of S(x, y, z) removed. [Color figure can be viewed

in the online issue, which is available at www.interscience.wiley.com.]

385Minimal Molecular Surfaces and Their Applications

Journal of Computational Chemistry DOI 10.1002/jcc



out a comparative study of MS and MMS. The MSs are gener-

ated by using the MSMS code.26

Figure 6 illustrates MS and MMS for a three-atom topology.

MSs are depicted in the first row. In Figure 6(a1), we show that

cusps occur when the probe radius is small. An increase in the

probe radius results in a self-intersecting surface, see Figure

6(a2). The edge of such a self-intersecting surface is singular. Its

generation is due to the fact that the probe sitting above the

Figure 5. The MMS of the open buckyball with van der Waals radius and scaled atomic radius. (a1)

Van der Waals radius, r 5 1.7 Å; (a2) Atomic radii, r 5 1.0 Å; (a3) Scaled atomic radii, r 5 0.6 Å;

(a4) Scaled atomic radii, r 5 0.5 Å. (b1), (b2), and (b3) show, respectively, the MMS of the same

open buckyball as in (a1), (a2), and (a3), with half of the data of S(x, y, z) removed. [Color figure can

be viewed in the online issue, which is available at www.interscience.wiley.com.]

Figure 6. Singularity studies for a three-atom system with radius r 5 1.5 and coordinates (x, y, z) 5
(22.3, 0, 0), (2.3, 0, 0), and (0, 3.984, 0). MSs and MMSs are shown in the first and second rows,

respectively. (a1) rp 5 0.5; (a2) rp 5 0.9; (a3) rp 5 1.0; (b1) rp 5 0.5; (b2) rp 5 0.6; (b3) without

probe constraint. [Color figure can be viewed in the online issue, which is available at www.interscience.

wiley.com.]
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three atoms intercepts with itself when it is below the three

atoms. For the MMS, the same fixed coordinate and atomic ra-

dius are used. The probe radius introduced in the last section is

used to create a hole at the center of these three atoms. We note

that this hole could also be generated without using the probe

radius, but through varying either coordinate values or atomic

radius. We have varied the probe radius over a large range and

found that MMSs are free of cusps and self-intersecting surfaces

(see the second row of Fig. 6). We note that in the last case,

Figure 6(b3), no probe constraint is used, which is computation-

ally equivalent to rp being very large.

We next consider a four-atom system. The first row of Figure

7 depicts MS results. Four pairs of cusps in Figure 7(a1) can be

clearly seen for a small probe radius. As the probe radius

increases to rp 5 0.5, four atoms are connected via smooth reen-

trant surface patches. However, as the probe radius is further

increased, a combination of cusps and self-intersecting surface

singularities occurs, see Figure 7 (a2). We have explored the pa-

rameter space of the MMS, and found no singularities in prac-

tice. The MMSs change from four isolated atoms into a four-

bead ring, and finally into a bulky four-atom surface as the

probe radius is increased.

Intuitively, the MMS generated by minimizing the mean cur-

vature operator generically should be free of cusp and self-inter-

section surface singularities. However, a mathematical proof of

this is not trivial and is out of the scope of the present work.

Applications

We now consider some more elaborate applications of the

MMS. Our first task is to generate the MMS of a complex bio-

molecule, a B-DNA double helix segment with 494 atoms (NDB

ID: BD0003; PDB ID: 425D). The MMS of the B-DNA gener-

ated by using �r 5 1.3rvdW and mesh size h 5 0.2 Å is given in

Figure 8(a). Similar MMSs can be generated for all other biomo-

lecules in the Protein Data Bank and Nucleic Acid Database.

For a comparison, the MS generated by using MSMS26 is

depicted in Figure 8(b), with the same set of van der Waals radii

and probe radius rp 5 1.5 Å. It is interesting to note that the

MMS better emphasizes the skeleton of the DNA’s double helix

structure. Moreover, the MMS is much smoother than the MS,

indicating a natural separation boundary between the less polar

biomolecule and the polar solvent. Furthermore, the enclosed

volume of the MMS is larger than that of the MS at the grooves

of the DNA because of the surface minimization. To quantify

the difference between the MMS and the MS, the root mean

square deviation (RMSD) of the distance of two surfaces is cal-

culated as follows. Consider the Cartesian grid of the MMS gen-

eration with x, y, and z meshlines. We first partition the domain

into many z-slices based on the z meshline and seek for devia-

tions between the MMS and MS contour lines within each z-

slice. This involves the determination of the MMS contour at

the given isosurface value. Under the x and y coordinate lines,

such a contour is actually piecewisely linear, i.e., consists of

only straight line segments. For each MS surface triangle edge

generated via the MSMS software, we examine if it intersects

with the current z-slice. If so, we compute the smallest distance

between the intersection point and the line segments of the

MMS of the same z-slice. By collecting all deviations, the

RMSD between the MMS and MS is estimated to be about

1.048 Å, which would imply significant differences in many

Figure 7. Singularity studies for a four-atom system with radius r 5 1.5 and coordinates (x, y, z) 5
(22.87, 0, 0), (0, 22.36, 0), (2.87, 0, 0), and (0, 2.36, 0), MSs and MMSs are shown in the first and

second row, respectively. (a1) rp 5 0.4; (a2) rp 5 1.1; (a3) rp 5 1.2; (b1) rp 5 0.4; (b2) rp 5 0.8;

(b3) without probe constraint. [Color figure can be viewed in the online issue, which is available at

www.interscience.wiley.com.]
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physical properties. Further study is required to fully understand

the impact and utility of the proposed MMS for biological mod-

eling.

We next consider the MMS of hemoglobin, an important

metalloprotein in red blood cells (PDB ID: 1hga). The system

has 4649 atoms. The MMS with ~r 5 1.3rvdW and h 5 0.3 Å

and the MS with rp 5 1.5 Å are depicted in Figures 9a and 9b,

respectively. While the MMS in the B-DNA example remains

essentially the same whether the cavity constraint is imposed or

not, the present example does require the enforcement of cavity

constraint. Only when the solvent accessible surface is consid-

ered, can a small pinhole be seen in the MMS near the center of

four globular protein subunits. In comparing with the MS of the

hemoglobin, it is obvious that the size of pinhole of the MMS is

smaller than that of the MS. However, the size of the pinhole of

the MMS can be adjusted via probe radius rp. A smaller rp will

lead to a larger pinhole.

Finally, we consider the application of the MMS to the elec-

trostatic analysis. By defining the MMS as the solvent–solute

dielectric interface, the electrostatic potentials of proteins can be

attained via the numerical solution of the Poisson–Boltzmann

equation. Twenty six proteins, most of them are adopted from a

test set used in previous studies,71,72 are employed. Two pro-

teins, i.e., Cu/Zn superoxide dismutase (PDB ID: 1b4l) and ace-

tylcholin esterase (PDB ID: lea5), are well-known for their

important electrostatic effects. For all structures, extra water

molecules are excluded and hydrogen atoms are added to obtain

full all-atom models. Partial charges at atomic sites and atomic

van der Waals radii are taken from the CHARMM22 force

field.73 However, for the Cu/Zn superoxide dismutase, the partial

charges on the metal atoms, zinc and copper, and on seven sur-

rounding residues are assigned according to the literature.74 By

setting the MMS and MS as the dielectric boundaries, electro-

static free energies of solvation DG are computed by using the

PBEQ,75 a finite difference based Poisson–Boltzmann solver

from CHARMM,76 at mesh sizes h 5 0.5 Å and h 5 0.25 Å.

The PBEQ was modified to admit the MMS interface. In all test

cases, the dielectric coefficient e is set to 1 and 80 respectively

for the protein and solvent. The MMS is generated with the

probe radius of rp 5 0.7 Å to enforce the cavity constraints, and

at the half of the grid spacing used in solving the Poisson-Boltz-

mann equation to ensure the accuracy. A probe radius of 1.4 Å

was used for the MS.

The numerical results of electrostatic free energies of solva-

tion are listed in Table 1. For the first twenty four proteins

(except 1b4l and lea5), the current PBEQ results based on the

MS are in excellent agreement with those reported in the litera-

ture.71,72 This validates our computational procedure. It can be

seen from Table 1 and Figure 10(a) that results of the MMS are

in good consistent with those of the MS. Figure 10(b) confirms

Figure 8. The MMS (a) and the MS (b) of a B-DNA double helix segment. [Color figure can be

viewed in the online issue, which is available at www.interscience.wiley.com.]
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that the deviations of the results computed with two surfaces are

very small. It is to point out this consistence depends on the

given probe radii for the MS and the MMS. Inconsistence occurs

when any one of these radii is significantly changed. Neverthe-

less, for a given MS probe radius, we can find an MMS probe

radius such that their electrostatic potentials have a good agree-

ment for a large set of proteins. Figure 11 shows the ortho-

graphic viewing of the surface electrostatic potentials of the

Cu/Zn superoxide dismutase (PDB ID: 1b4l) computed with MS

and MMS at h 5 0.5 Å. Clearly, there is a very good agreement

between two potentials. In particular, positively charged active

site can be similarly observed in the concave regions in both fig-

ures. Nevertheless, some small deviations can still be detected

and their impact on the electrostatic steering and electrostatic

forces is to be further analyzed in the future.

Conclusion

This article presents a novel concept, the MMS, for the theoret-

ical modeling of biomolecules. A hypersurface function is

defined with atomic constraints or obstacles from biomolecular

structural information. The mean curvature of the hypersurface

function is minimized through an iterative procedure. The

MMS is extracted from an appropriate level surface of the

hypersurface. The proposed method is systematically validated.

The ability of the present method for dealing with internal and

open cavities are illustrated. The MMS will not create a cavity

that is smaller than a solvent molecule when an appropriate

probe radius is used. We demonstrate that MMSs are typically

free of singularities. Numerical experiments are carried out for

a variety of systems, including simple molecules, DNAs and

complex proteins. Twenty six proteins are used to illustrate the

electrostatic analysis using the proposed MMS. It is believed

that the proposed MMS has the potential to contribute to the

development of new methods for the studies of surface chemis-

try, physics and biology, and in particular, on the analysis of

stability, solubility, solvation energy, and interaction of macro-

molecules, such as proteins, membranes, DNAs and RNAs.

Figure 9. The MMS (a) and the MS (b) of the hemoglobin. [Color figure can be viewed in the online

issue, which is available at www.interscience.wiley.com.]

Table 1. Electrostatic Free Energies of Solvation Calculated by Using

the PBEQ.

h

MMS MS

0.5 Å 0.25 Å 0.5 Å 0.25 Å

1ajj 21160.1 21128.9 21180.3 21155.9

2pde 2839.9 2815.2 2856.1 2839.2

1vii 2938.1 2914.1 2947.6 2921.5

2erl 2983.4 2958.5 2987.1 2965.1

1cbn 2321.0 2299.8 2332.1 2315.8

1bor 2877.0 2853.1 2899.1 2874.8

1bbl 21033.2 2998.5 21039.5 21011.1

1fca 21245.4 21213.1 21241.3 21217.6

1uxc 21196.6 21151.5 21201.3 21165.3

1shl 2790.8 2760.4 2801.2 2774.6

1mbg 21404.0 21360.6 21405.0 21372.5

1ptq 2911.2 2872.9 2928.0 2897.6

1vjw 21295.8 21255.1 21293.9 21261.7

1fxd 23352.2 23318.4 23356.3 23327.3

1r69 21137.9 21089.1 21149.8 21114.7

1hpt 2871.7 2820.1 2877.7 2840.6

1bpi 21355.9 21309.5 21364.7 21330.1

451c 21078.5 21033.6 21093.7 21055.1

1a2s 21972.7 21929.7 21981.1 21944.8

1frd 22946.1 22883.8 22944.2 22891.8

1svr 21778.9 21725.5 21800.3 21756.8

1neq 21818.8 21759.8 21816.7 21768.6

1a63 22478.2 22403.5 22509.5 22438.5

1a7m 22241.3 22172.1 22279.6 22211.6

1b4l 21772.4 21703.3 21813.4 21750.8

1ea5 26400.2 26224.1 26396.2 26233.8
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However, the MMS is not designed to replace or mimic other

existing surface representations for all purposes. The proposed

MMS can be computed via a stand-alone program based on the

marching cubes triangulation,64 and the computational expense

of the MMS depends on the desired level of resolution. In the

current studies of proteins and DNAs, the generation of the

MMS usually uses slightly more CPU time than that of the MS

using the MSMS code.26 Issues of efficient generation of the

MMS and further application to the implicit solvent models are

under our consideration.

Figure 10. Comparison of electrostatic free energies of solvation DG of twenty six proteins listed in

Table 1. (a) Electrostatic free energies of solvation DG; (b) Relative differences of solvation free ener-

gies: (DGMMS 2 DGMS)/DGMS. [Color figure can be viewed in the online issue, which is available at

www.interscience.wiley.com.]

Figure 11. Surface electrostatic potentials of the Cu/Zn superoxide dismutase at h 5 0.5 Å. (a) Gener-

ated with the MMS; (b) Generated with the MS.
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