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Abstract. We investigate the existence of a true invariant manifold given
an approximately invariant manifold for an infinite-dimensional dynamical
system. We prove that if the given manifold is approximately invariant and
approximately normally hyperbolic, then the dynamical system has a true
invariant manifold nearby. We apply this result to reveal the global dynamics
of boundary spike states for the generalized Allen–Cahn equation.

1. Introduction

The motivation for this work derives from many results associated with the
following generalization of the Allen–Cahn equation with small diffusion
parameter 0 < ε � 1

{
ut = ε2∆u − u + f(u), x ∈ Ω
∂u
∂N = 0, x ∈ ∂Ω.

(1.1)

We assume that Ω is a smoothly bounded domain in Rn, and take N to be
the outward unit normal vector to ∂Ω. The nonlinearity f ∈ C1 and is such
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that there is a non-degenerate positive radially symmetric ground state of
the corresponding rescaled elliptic problem on Rn.

Stationary solutions were investigated by Lin, Ni and Takagi in [LNT]
and Ni and Takagi in [NT1], [NT2], and [NT3], where the authors proved
the existence of solutions that are almost zero on most of the domain but
have a single sharp peak (spike) on the boundary. The approach was varia-
tional, using constrained optimization, then giving a refined analysis of the
critical point.

The profile of a peak solution was shown to be roughly given by a trans-
lation of the rescaled ground state w of the elliptic equation

⎧⎨
⎩

∆w − w + f(w) = 0, y ∈ Rn,

w(0) = max w(y), w > 0,

w(y) → 0, y → ∞.

(1.2)

In the third paper [NT3], the peak was shown to have its maximum
exactly on ∂Ω and located close to where ∂Ω had greatest mean curvature.
In heuristic terms, this is because the energy associated with this equation has
two parts, bulk and interfacial, both of which are minimized by having the
spike located at such a point. To explain further, in minimizing among non-
trivial states the bulk energy is almost zero due to the profile being almost
zero except for an ε-small region where the spike occurs, and the interfacial
energy being roughly proportional to the surface area of the region in Ω
on which the solution makes its excursion. Both of these remain essentially
unchanged as the center of the peak moves through the interior of the domain
with distance from the boundary O(1) but decrease to approximately one
half their former values as the center of the peak moves to the boundary.
They are further reduced by moving the center to a point on the boundary
to minimize the volume/area of that part of the ε-sphere which lies in Ω,
that is, the point on the boundary at the point where the mean curvature is
greatest.

The role of the mean curvature in localizing and determining the Morse
index of stationary boundary spike solutions was investigated further in
[BDS], [BS], and [We2].

In this paper, we go beyond that analysis, first building approximate
solutions out of modifications of rescaled and translated ground states cen-
tered at each point of the boundary, ∂Ω. This family of spikes then forms
a global manifold in function space that is diffeomorphic to ∂Ω and which
we show is approximately invariant and approximately normally hyperbolic
relative to (1.1) in a sense made precise later. We then prove that, in a small
neighborhood of this approximately invariant manifold of spike states, there
is a true invariant manifold, being a smooth graph over the former manifold.
Furthermore, the space in which we work is continuously imbedded in the
space of continuous functions and the neighborhood so small that the true
invariant manifold consists of spike-like functions. Finally, we prove that
the dynamics of one of these spike states is governed by a vector field pro-
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portional to the gradient of the mean curvature of ∂Ω and that the maximum
value of the solution is always on ∂Ω during the flow.

The approach, involving the construction of an approximate invariant
manifold of states having a certain spatial structure, was pioneered more
than twenty years ago in papers of G. Fusco and J. Hale in [FH] and by J. Carr
and R. Pego in [CP1]. In those papers the authors were interested in the
slow dynamics of interfaces in solutions to the one-dimensional Allen–Cahn
equation. The same approach was also taken to obtain similar results for the
one-dimensional Cahn–Hilliard equation in [ABF] and [BX1], [BX2], and
to rigorously establish the slow motion of “bubble”-like solutions [AF] and
multipeaked stationary solutions to the Cahn–Hilliard equation [BFu] in
multi-dimensional domains. The approach was also used to produce spike-
like stationary solutions to the shadow Gierer–Meinhardt system of biologi-
cal pattern formation [Ko]. In most of these papers, the qualitative behavior
of solutions was the point of interest and so a true invariant manifold was
not shown to exist, although that was done in a subsequent paper by Carr
and Pego in [CP2] and also in [BX2]. Recently, Zelik and Mielke in [ZM]
studied the dynamics of multi-pulse solutions for parabolic dissipative sys-
tems in Rn by using an invariant manifold approach with a nonautonomous
perturbation. We have also learned of results by Ackermann, Bartsch, and
Kaplicky [ABK] in which an invariant set of spike states is found for (1.1),
this set being topologically equivalent to ∂Ω. The approach is quite different
from ours, but starts by considering the boundary of the basin of attraction
of the zero solution of (1.1).

What has been lacking is a systematic way to deduce the existence of
a true invariant manifold in a small neighborhood of the approximately
invariant manifold constructed by hand, as described above. Here we give
a general result, simplifying some of the analysis needed in the applications
mentioned previously, and at the same time giving stronger conclusions. In
our example we give, to first order, the dynamical system that describes the
motion of spikes globally, not just in a neighborhood of stationary points
and more precisely than only giving the order of magnitude of the speed, as
is usually the case.

To state our result on the existence of a global invariant manifold of
boundary spike states and to give the dynamics of the spikes along the
boundary of Ω, we need to use a scaled norm and metric.

Define, for any q ∈ [1,∞), positive integer k, and smooth function
u : Ω → R,

|u|Wk,q
ε (Ω)

=
∑

0≤|α|≤k

ε
|α|− n

q |∂αu|Lq(Ω) =
∑

0≤|α|≤k

ε|α||∂αu|Lq(Ω,ε−ndµ).

Note that | · |Wk,q
ε (Ω)

= | · |Wk,q(Ωε,x0 ), where x0 ∈ Rn and Ωε,x0 = { x−x0
ε

:
x ∈ Ω}.

Let (∂Ω, 1
ε2 〈 · , · 〉) denote the Riemannian manifold ∂Ω with the metric

scaled by 1
ε
. We have the following theorem on existence of dynamic spike

solutions.
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Theorem 1.1. Under assumptions (F1)–(F3) given in Sect. 7 with f ∈ Cm,
m ≥ 1, for any sufficiently small ε > 0, there exists a mapping Ψε ∈
Cm((∂Ω, 1

ε2 〈 · , · 〉), W2,2
ε (Ω)) such that

(1) For any q ∈ [2,∞), there exists C > 0 independent of p ∈ ∂Ω and
sufficiently small ε > 0 such that

|Ψε − Wε|C0((∂Ω, 1
ε2 〈 · ,· 〉),W2,2

ε (Ω)∩W2,q
ε (Ω)) ≤ Cε

|Ψε − Wε|C1((∂Ω, 1
ε2 〈 · ,· 〉),W2,2

ε (Ω)∩W2,q
ε (Ω)) → 0 as ε → 0.

where Wε(p) = w(
·−p
ε

).
If f ∈ C2, then |Ψε − Wε|C1((∂Ω, 1

ε2 〈 · ,· 〉),W2,2
ε (Ω)∩W2,q

ε (Ω))
≤ Cε.

(2) M∗
ε ≡ Ψε(∂Ω) is a normally hyperbolic invariant manifold of the semi-

flow generated by (1.1).
(3) On the invariant manifold M∗

ε , (1.1) is conjugate through Ψε to the
ODE given by a vector field Yε(p) on ∂Ω such that

lim
ε→0

sup
p∈∂Ω

{
1

ε3

∣∣Yε(p) − cε3∇κ(p)
∣∣} = 0

for some c > 0 determined only by w, where κ(p) = H(p) · N(p)

and H(p) is the mean curvature vector of ∂Ω. Moreover, if f ∈ C1,β

with β ∈ (0, 1], then there exists C > 0 independent of p ∈ ∂Ω and
sufficiently small ε > 0 such that

∣∣Yε(p) − cε3∇κ(p)
∣∣ ≤ Cε3+β.

(4) If f ∈ C1,β with β ∈ (0, 1], then for each p ∈ ∂Ω, there exists
a unique p̃ ∈ ∂Ω such that maxx∈Ω̄ Ψε(p)(x) = Ψε(p)( p̃). Moreover
|p − p̃| < Cε2 for some C > 0 independent of 0 < ε � 1.

Remarks. As might be expected, since the flow is gradient and the en-
ergy derives mainly from the interface, the spike solutions move along the
boundary of the domain in a way that decreases the interface within Ω.
Thus, they are driven by the mean curvature, and are stationary at a point in
an ε-neighborhood of a non-degenerate critical point of the mean curvature.
This recovers results of others to which we alluded earlier, but we give the
global flow and the location of stationary points is just a corollary.

The main abstract results in this paper, used in establishing the above
theorem, provide for the existence of invariant manifolds and their invariant
foliations for infinite dimensional dynamical systems when such systems
have approximately invariant manifolds that are approximately normally
hyperbolic.
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The theory of invariant manifolds and foliations provides indispensable
tools for the study of dynamics of nonlinear systems in finite or infinite
dimensional space. As is the case here, invariant manifolds can be used
to capture complex dynamics and the long term behavior of solutions and
to reduce high dimensional problems to the analysis of lower dimensional
structures. Invariant manifolds with invariant foliations provide a coordin-
ate system in which systems of differential equations may be decoupled
and normal forms derived. These play an important role in the study of
structural stability of dynamical systems or, when a degeneracy occurs, in
understanding the nature of bifurcations.

The rich history of developments in the field dates back to work of
Hadamard, Perron, and Lyapunov, and includes notable advances due to
Androsov, Bogoliubov, Fenichel, Hale, Hartman, Henry, Hirsch–Pugh–
Shub, Krylov, Kurzweil, Levinson, Mañé, Marsden, Pliss, Ruelle, Sacker,
Sell, and many others, too numerous to list here. Our abstract results provide
another step in the development by giving weaker conditions under which
invariant manifolds and foliations can be shown to exist, but conditions that
arise in the study of nonlinear partial differential equations.

When the invariant manifold is an isolated equilibrium point, this prob-
lem was studied by Newton and others. The problem can be formulated as:
Given that a differentiable function has an approximate zero, does it have
a true zero? Newton’s theorem says that if the approximation is a “good” one
and if a nondegeneracy condition holds, then there is a true zero nearby. Our
result can be seen as a generalization of this, giving a nondegeneracy con-
dition (approximate normal hyperbolicity) under which an approximately
invariant manifold gives rise to a true invariant manifold nearby. Just as
Newton’s theorem is related to the Implicit Function Theorem, which gives
persistence of zeros under perturbation, our result is related to the persist-
ence problem for invariant manifolds.

When the approximately invariant manifold of a dynamical system is
a true invariant manifold of another nearby dynamical system, one may
naturally think that existence of an invariant manifold for the original system
is a question of persistence under perturbation. That problem can be stated
as: Assuming that a dynamical system has an invariant manifold, does
a perturbation of this system also have an invariant manifold? Both local
theory (theory of stable, unstable, and center manifolds) and global theory
(theory of normally hyperbolic invariant manifolds) have been developed
to address this question.

But there is a subtle difference between the question of persistence
and the one we address here. We are not asking how close another dy-
namical system must be to one having a true invariant manifold in order
to also enjoy that property, and then hoping that our dynamical system
is that close. Instead, we look for a true invariant manifold for the given
system as a perturbation of the approximately invariant manifold we have
at hand. However, the persistence result is a special case of the results
in this paper, since an invariant manifold of a dynamical system is actu-
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ally an approximately invariant manifold of the perturbed dynamical sys-
tem.

Furthermore, in applications and numerical computations, the approxi-
mately invariant manifold one has may not be a true invariant manifold of
another system. In fact, the approximately invariant manifold that we con-
struct for (1.1) is not a true invariant manifold of any nearby system. The
abstract problem we consider here, therefore, is more general and can be
regarded as an extension of both Newton’s theorem and the classical theory
of perturbation of invariant manifolds.

We now give the general formulation of the problem we address. Before
we discuss results for continuous dynamics, we present the theory for maps.

Let X be a Banach space and let T be a C1 map from X into X. We
do not assume invertibility in general and so the results will apply to semi-
dynamical systems. A typical example is the time-t map of the solution
operator for a nonlinear parabolic partial differential equation.

Suppose that there exists a smooth manifold, M̃, embedded in X, which
is approximately invariant with respect to T , that is, for some small δ > 0

T(M̃) ⊂ B(M̃, δ)

and

M̃ ⊂ B(T(M̃), δ),

where B(M̃, δ) = {x ∈ X : dist(x, M̃) < δ} is a δ neighborhood of M̃.
Our general results include the cases where the manifold is immersed,

rather than embedded in X but it is better to keep in mind the most straight-
forward situation at first.

The questions which are addressed here concern the existence of a true
invariant manifold for T and the qualitative behavior of the orbits near this
invariant manifold. In general there will be no true invariant manifold for T
even in finite dimensional space. One can easily construct examples that
violate the conditions of Newton’s theorem and have an approximate zero
but no true zero. In order to guarantee the existence of a true invariant mani-
fold, a nondegeneracy condition on the approximately invariant manifold
is necessary. This condition is approximate normal hyperbolicity. The con-
dition gives, for each m ∈ M̃, a decomposition X = Xc

m ⊕ Xu
m ⊕ Xs

m ,
with Xc

m an approximation of the tangent space to M̃ at m and such
that

(a) This splitting is approximately invariant under the linearized map, DT ,
(b) DT(m)|Xu

m
expands and does so to a greater degree than does DT(m)|Xc

m

while DT(m)|Xs
m

contracts and does so to a greater degree than does
DT(m)|Xc

m
.

The superscripts c, u and s stand for “center”, “unstable”, and “stable”,
respectively. The precise definition of approximate normal hyperbolicity is
given in Sect. 2, where we give notation and state the main results.
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Heuristically, our main results may be summarized by

Theorem 1.2. Suppose that M̃ is a C1 manifold which is approximately
invariant and approximately normally hyperbolic with respect to T , the
approximation being sufficiently good and the “twisting” of M̃ being uni-
formly bounded, then

(1) Existence: T has a true C1 normally hyperbolic invariant manifold M
near M̃.

(2) Smoothness: If T is Ck and a “spectral gap” condition holds, then M
is Ck.

(3) Stable and unstable manifolds: There is a stable manifold Ws(M) and
an unstable manifold Wu(M) of T at M.

(4) Invariant foliations: Both Ws(M) and Wu(M) are foliated by invariant
foliations:

Ws(M) =
⋃

m∈M

Wss
m and Wu(M) =

⋃
m∈M

Wuu
m ,

where leaves Wss
m and Wuu

m are Ck submanifolds and are Hölder con-
tinuous in m.

(5) Characterization of foliations: For any x, x̃ ∈ Wss
m , |T n(x̃)−T n(x)|→0

exponentially, as n → +∞; For any y, ỹ ∈ Wuu
m , |T n(ỹ)− T n(y)| → 0

exponentially, as n → −∞.
(6) Semiflow: If M̃ is an approximately invariant manifold of time-t0 map T t0

of a semiflow at t0 > 0, then the semiflow T t has a normally hyperbolic
invariant manifold.

Remarks. We do not assume that M̃ is compact or finite dimensional. Also,
M̃ is not necessarily an embedded manifold, but may be an immersed
manifold. We assume that the immersed manifold M̃ does not twist very
much locally, and DT has a certain uniform continuity in a neighborhood
of M̃.

The above result can be viewed as an extension of [BLZ1] and [BLZ2]
where perturbations of semiflows are considered. Note that in Item 5, above,
it is part of the result that T −1 exists on the unstable manifold.

In the present paper, we also consider the more general case where the
manifold M̃ has boundary and is approximately overflowing (intuitively,
“approximately negatively invariant and the semiflow crosses the bound-
ary transversally”) or approximately inflowing (intuitively, “approximately
positively invariant and the semiflow crosses the boundary transversally”).
In fact the theorem above is obtained by first finding overflowing and in-
flowing invariant manifolds and taking their intersection.

As an example, the local unstable manifold of a periodic orbit is an
overflowing invariant manifold and the local stable manifold is an inflowing
invariant manifold.
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For approximately overflowing manifolds and inflowing manifolds, our
results may be summarized as

Theorem 1.3. Given that the approximately overflowing invariant mani-
fold M̃ is approximately normally hyperbolic, then

(i) Existence: T has a true C1 center-unstable manifold Wcu, which is an
overflowing invariant manifold.

(ii) Smoothness: If T is Ck and a “spectral gap” condition holds, then
Wcu is Ck.

(iii) Invariant foliation: Wcu is foliated by an invariant foliation:

Wcu =
⋃

m∈M

Wuu
m ,

where each leaf Wuu
m is a Ck submanifold and the family is Hölder

continuous in m.
(iv) Characterization of foliation: For any y, ỹ ∈ Wuu

m , |T (n)(ỹ)− T (n)(y)|
→ 0 exponentially, as n → −∞;

(v) Semiflow: If M̃ is an approximately overflowing invariant manifold
that is approximately normally hyperbolic for the time-t0 map T t0 of
a semiflow at t0 > 0, then the semiflow T t has a true center-unstable
manifold Wcu that has the same properties as maps.

(vi) Inflowing manifolds: Similar results hold for approximately inflowing
manifolds.

Remark. The perturbation theory for overflowing/inflowing invariant mani-
folds and their invariant foliations was developed in [BLZ2] and [BLZ3].
We reported on the basic results of this paper in [BLZ4] as well as at several
conferences in the intervening years.

We develop the abstract results first, giving a precise formulation for im-
mersed approximately inflowing manifolds in the next section. Coordinate
systems in a tubular neighborhood of the manifold are constructed in Sect. 3.
In Sect. 4 we prove the existence of a center-stable manifold, as a graph over
the stable bundle of the given approximately invariant inflowing manifold.
Section 5 provides an invariant foliation of the center-stable manifold with
stable fibers. Section 6 includes a discussion of the modifications needed for
the case of approximately overflowing invariant manifolds, smooth depend-
ence on parameters, results for semiflows as a consequence of the previously
obtained results for maps, and how perturbation theorems follow from the
present work. The application of our abstract results to the manifold of spike
states and their dynamics governed by (1.1) is provided in Sect. 7.

Acknowledgement. We thank the referee(s) for a careful reading of the paper and suggesting
ways in which our results could be clarified, especially in regard to the smoothness of the
nonlinearity in the problem of spike states.
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2. Main results for inflowing invariant manifolds

In this section, we first introduce basic notations, hypotheses, and results
for approximate inflowing invariant manifolds. Overflowing manifolds and
several other issues will be considered in Sect. 6. As mentioned in the
introduction, our results are for the general case of immersed manifolds.

Let X be a Banach space and T ∈ C J(X, X), J ≥ 1. Suppose that M is
a connected C1 Banach manifold (with boundary removed for convenience)
and that ψ : M → X is an immersion.

For a subset A ⊂ X, and a > 0, let

B(A, a) = {x ∈ X : d(x, A) < a}.
For m0 ∈ M, let Bc(m0, a) denote the connected component of the set
ψ−1(B(ψ(m0), a)) containing m0, this being the natural neighborhood of
m0 in the model manifold, M.

Definition 2.1. ψ(M) is said to be approximately inflowing invariant if the
following conditions hold

(1) There exist η > 0 and u ∈ C0(M, M), such that

|T(ψ(m)) − ψ(u(m))| < η

for all m ∈ M;
(2) There exists r0 ∈ (0, 1) such that ψ(Bc(m0, r0)) is closed in X for any

m0 ∈ u(M).

Condition (1) means that ψ(M) is approximately invariant under T
and u is an approximation of T on ψ(M). Condition (2) essentially states
that the ‘distance’ between the projection of T(ψ(M)) into ψ(M) and the
boundary of ψ(M) is bounded from below. Lemma 3.7 makes this more
precise.

For an example of an immersed, but not embedded invariant manifold,
see [BLZ2].

The inflowing manifolds we consider here have a certain “normal hyper-
bolicity” property, i.e., the linearization DT has different growth rates in
different directions. More precisely, conditions (H1)–(H3) hold:

(H1) For each m ∈ M there is a decomposition

X = Xc
m ⊕ Xs

m ⊕ Xu
m

of closed subspaces with associated projections Πc
m , Πu

m , and Πs
m .

(H2) For any m ∈ M, Πc
m is an isomorphism from Dψ(m)Tm M to Xc

m .
Furthermore there exist constants B, L ≥ 1, χ ∈ (0, 1

2 ), such that, for
any m0 ∈ M, m1, m2 ∈ Bc(m0, r0), m1 �= m2, α = c, u, s,⎧⎨

⎩
∥∥Πα

m0

∥∥ ≤ B,
∥∥Πα

m1
− Πα

m2

∥∥ ≤ L|ψ(m1) − ψ(m2)|
|ψ(m1)−ψ(m2)−Πc

m0
(ψ(m1)−ψ(m2))|

|ψ(m1)−ψ(m2)| ≤ χ.
(2.1)
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Hypothesis (H2) means that Πc
m is approximately the tangent space Tm ψ(M)

and ψ(M) does not twist too much, allowing us to construct a local tubular
neighborhood with a uniform diameter. We notice that if (H2) holds for r0
then it also holds for any 0 < r ≤ r0.

The following hypothesis is a weak normal hyperbolicity condition.

(H3) There exist σ, λ ∈ (0, 1) such that, for any m0 ∈ M, if m1 ≡ u(m0),
and α ∈ {c, s}, β ∈ {c, s, u}, with α �= β, then∥∥Πβ

m1
DT(ψ(m0))

∣∣
Xα

m0

∥∥ ≤ σ(2.2) ∥∥Πs
m1

DT(ψ(m0))
∣∣

Xs
m0

∥∥ < λ,(2.3)

(2.4) λ
∥∥(Πu

m1
DT(ψ(m0))

∣∣
Xu

m0

)−1∥∥−1
> max

{
1,
∥∥Πc

m1
DT(ψ(m0))

∣∣
Xc

m0

∥∥J}
.

Condition (2.2) represents the approximate invariance of Xc and Xs under
the linearization of the map T . Note that we do not require Xu to be
approximately invariant. Different growth or decay properties of DT in the
unstable and center-stable directions are assumed in (2.3) and (2.4). Here,
(H3) implicitly assumes that, for any m0 ∈ M,

Πu
m1

DT(ψ(m0)) : Xu
m0

→ Xu
m1

is an isomorphism. Though we do not assume DT contracts more strongly
in the direction of Xs than it does in the direction of Xc at this moment,
(H3) is sufficient in the proof of the existence of a unique inflowing invariant
manifold in the direction of Xc ⊕Xs. Finally, we have the following technical
assumption on T .

(H4) There exists B1 ≥ 1 such that, for any 1 ≤ j ≤ J∥∥D j T |B(ψ(M),r0)

∥∥ ≤ B1.

When j > 1, D j T is understood as a multilinear map. Hypothesis (H4)
holds automatically if ψ(M) is precompact. When J = 1, we need the
following function

A(δ) = sup{‖DT(x1) − DT(x2)‖ : x1, x2 ∈ B(ψ(M), δ), |x1 − x2| < δ}.
(2.5)

Note that if DT is uniformly continuous, then inf A(δ) = 0. In fact, we
will only require inf A(δ) to be small, which is a weaker version of uniform
continuity. When J > 1, it is obvious that A(δ) ≤ B1δ. For α = c, u, s, let

Xα
m(ε) = {

x ∈ Xα
m : |x| < ε

}
and Xα(ε) = {

(m, x) : m ∈ M, x ∈ Xα
m(ε)

}
.

Theorem 2.2. Assume that (H1)–(H4) hold. Depending on r0, B, B1, λ, L,
when η, χ, σ , and inf A(δ) are sufficiently small, there exists a C J positively
invariant manifold Wcs, which is given as the image of a map

h : {(m, xs) : m ∈ M, xs ∈ Xs
m(δ0)

} → X,
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for some δ0 > 0. The mapping h also satisfies

h(m, xs) − (ψ(m) + xs) ∈ Xu
m(δ0).

Remark 2.3. a.) The important point is that the smallness of the constants
η, χ, σ , and inf A(δ) depend on M and T only through the parameters
r0, B, B1, λ, L . A more precise statement can be found in Theorem 4.2.

b.) From the proof, it holds that, for any m0 ∈ M, there exists h̃ : Xc
m0

(δ0)⊕
Xs

m0
(δ0) → Xu

m0
so that{

h(m, xs) : m ∈ Bc(m0, r0) ∩ ψ−1

(
B

(
ψ(m0),

δ0

4

))
, xs ∈ Xs

m

(
δ0

4

)}

⊂ ψ(m0) + graph
(
h̃|

Xc
m0(

δ0
2 )⊕Xs

m0(
δ0
2 )

)
⊂ {

h(m, xs) : m ∈ Bc(m0, r0) ∩ ψ−1(B(ψ(m0), δ0)), xs ∈ Xs
m(δ0)

}
.

Moreover, there exists C > 0 depending on r0, B, B1, λ, L such that

|h̃|C J(Xc
m0

(δ0)⊕Xs
m0

(δ0)) ≤ C.

In fact, Lip h̃ can be rather small (see Theorem 4.2 for details).

This positively invariant manifold is called the center stable manifold
associated with ψ(M) as it stretches in approximately the tangent direction
and the stable direction of ψ(M). In some cases, an embedded inflowing
invariant manifold, instead of an immersed manifold, is desired. To obtain
the existence of an embedded inflowing invariant manifold, we need not
only the original manifold to be embedded, but also the following condi-
tion

(H2’) For m1, m2 ∈ ψ−1(B(ψ(m0), r0)), (2.1) holds.

A natural question after the existence and uniqueness of the positively
invariant center-stable manifold Wcs is if there exists a unique positively
invariant manifold close and homeomorphic to ψ(M). The answer is that
there generally exist such manifolds, but not uniquely, and its smoothness is
more delicate. To understand this, think of an ODE which has a hyperbolic
equilibrium with exactly two eigenvalues with negative real parts. If they
are both real but not equal, then the stable manifold, which corresponds
to our center-stable manifold here, and the strong stable manifold, which
corresponds to one of the stable fibers to be constructed in Sect. 5 both
uniquely exist. However, the weak stable manifold (in the direction of
the eigenvector of the weak negative eigenvalue), corresponding to the
center manifold here, exists, but not uniquely. The construction of such
positively invariant center manifolds or weakly stable manifolds is usually
done by first modifying the system outside a bounded set in the phase
space and then applying general theorems like the ones obtained in this
paper.
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If M is both inflowing and overflowing as described in Subsect. 6.2,
which usually implies that M is a closed manifold without boundary, then
there also exists an negatively invariant center unstable manifold. The inter-
section of the center stable and center unstable manifold is a normally
hyperbolic invariant manifold close to ψ(M).

The following result concerns a stable foliation of the center-stable
manifold. In the construction we will need a further condition requiring
nondegeneracy in the ‘tangential’ direction:

(H3’) There exists a > 0 such that, for any m0 ∈ M, writing m1 = u(m0),

Πc
m1

DT(ψ(m0)) : Xc
m0

→ Xc
m1

is an isomorphism with
∥∥(Πc

m1
DT(ψ(m0))

∣∣
Xc

m0

)−1∥∥−1
> a(2.6)

∥∥Πs
m1

DT(ψ(m0))
∣∣

Xs
m0

∥∥ < λ
∥∥(Πc

m1
DT(ψ(m0))

∣∣
Xc

m0

)−1∥∥−1
.(2.7)

As a convention, throughout the paper, a is taken to be 1 if (H3’) is not
assumed.

In order to avoid technical complications near the boundary of Wcs, we
will construct stable fibers with base points in an open subset, W̃cs, which
is away from the boundary of Wcs. Let

W̃cs =
{

h(m, xs) : ψ(Bc(m, δ0)) is closed in X, xs ∈ Xs
m

(
δ0

5

)}
,

where h is the map in Theorem 2.2 representing Wcs.

Theorem 2.4. Assume that (H1)–(H4) and (H3’) hold. Depending on r0, B,
B1, λ, L, a, when η, χ, σ , and inf A(δ) are sufficiently small, for any y ∈ W̃cs,
there exists a unique C J submanifold y ∈ Wss

y ⊂ Wcs, such that

(1) T(Wss
y ) ⊂ Wss

T(y);
(2) For y, ỹ ∈ W̃cs, “ỹ ∈ Wss

y ” is an equivalence relation;
(3) for any ỹ ∈ Wss

y , |T (n)(ỹ) − T (n)(y)| → 0 exponentially, as n → +∞;
(4) Wss

y is Hölder continuous in y and TyWss
y is continuous in y.

Again the precise statement on the smallness of the quantities η, χ, σ ,
and inf A(δ) is same as in the existence of the center stable manifold and
can be found in Theorem 4.2.

In fact, for any y = ψ(m)+xs +xu ∈ Wcs, the stable fiber Wss
y through y

can be written as the graph of a C J map gy from an open set of Xs
m to Xc

m⊕Xu
m

and gy has small Lipschitz constant. Therefore, the stable fibers are roughly
in the stable directions. We also want to point out that the stable foliation
is constructed without using the existence of an invariant center manifold
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in Wcs. Precise statements of the properties of the stable foliation can be
found in Sect. 5.

For applications, it is important to have some estimate on the quantities
such as δ0, the width of the center stable manifold in the stable direction,
etc. In general, when we are interested in the dynamics near ψ(M), we
would like δ0 be as large as possible to provide some characterization of
the dynamics in a large neighborhood of ψ(M). Sometimes, it is possible
that the center stable manifold contains a center manifold and we may be
interested in the location of the center manifold. In this case, we would
like δ0 be as small as possible. Therefore, throughout this paper, we will
track these constants and their dependence on the given quantities. A precise
statement about these parameters can be found in Theorem 4.2. In the proofs,
the generic constants C = C( 1

r0
, B, B1,

1
λ
, 1

a , L) and C0 = C0(B, B1,
1
λ
, 1

a )

are increasing in their arguments but may change from line to line. In the
construction, the upper bound σ0 of σ is always taken independent of L .
The independence of σ0 on L will be needed in one of the applications (see
Subsect. 6.4).

3. Preliminaries

In this section, we establish various local coordinate systems in neighbor-
hoods of ψ(M) and study their relationships. We assume (H1) and (H2)
throughout this section, if not otherwise specified.

Since ψ is not an embedding, care must be taken to construct the coordin-
ate systems in a tubular neighborhood of ψ(M). We proceed as in [BLZ2].
Since ψ does not locally twist the manifold M very much (see (H2)), we are
able to establish local tubular neighborhoods around ψ(Bc(m, r)), for some
r > 0 and every m ∈ M, and to obtain basic estimates. It may happen that
some points in these tubular neighborhoods do not have globally unique
representations, but this difficulty will be overcome.

Lemma 3.1. If two projections P1, P2 on X satisfy

‖P1 − P2‖ < 1,

then P2|P1(X ) is an isomorphism from P1(X) to P2(X).

Proof. Note that

(P1 − P2)
2 = P1 + P2 − P1 P2 − P2 P1.

For any x ∈ P1(X), we have

x − P1 P2x = (P1 − P2)
2x,

which implies

‖(I − P1 P2)|P1(X )‖ < 1.
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Therefore, (P1 P2)|P1(X ) is an isomorphism. Similarly, (P2 P1)|P2(X ) is also
an isomorphism, which implies P2|P1(X ) is an isomorphism. ��

By the lemma and according to (H2), for any 0 < r < min{r0,
1
L },

m0 ∈ M and m1 ∈ Bc(m0, r), Πα
m1

|Xα
m0

is an isomorphism from Xα
m0

to Xα
m1

for α = c, s, u. For any m0 ∈ M and ε > 0, define

N(m0, r, ε) = {
ψ(m) + xs + xu : m ∈ Bc(m0, r), xα ∈ Xα

m, |xα| < ε
}

which is the union of Xs
m(ε)⊕ Xu

m(ε) attached to ψ(m) for all m ∈ Bc(m0, r).
We shall prove that when r and ε are small, N(m0, r, ε) is a neighbor-
hood of ψ(Bc(m0, r)) in which every point has a unique representation as
given in the definition of N(m0, r, ε). First, we write points in N(m0, r, ε)
in different coordinate systems and study how they are related to each
other.

Let mi ∈ Bc(m0, r0) and xα
i ∈ Xα

mi
for i = 1, 2 and α = u, s. We may

write ψ(mi) + xs
i + xu

i for i = 1, 2 as

ψ(mi) + xs
i + xu

i = ψ(m0) + x̄c
i + x̄s

i + x̄u
i(3.1)

= ψ(mi) + Πs
mi

x̃s
i + Πu

mi
x̃u

i ,

where x̃α
i , x̄α

i ∈ Xα
m0

. A basic comparison between x̃α
i and x̄α

i is given by

Lemma 3.2. If |x̃s
i | < ε for i = 1, 2, then∣∣x̄c

1 − x̄c
2 − (ψ(m1) − ψ(m2))

∣∣(3.2)

≤ (χ + 2BLε)|ψ(m1) − ψ(m2)|
+ BL|ψ(mi) − ψ(m0)|

(∣∣x̃s
1 − x̃s

2

∣∣+ ∣∣x̃u
1 − x̃u

2

∣∣)
and, for α = u, s,∣∣x̄α

1 − x̄α
2 − (

x̃α
1 − x̃α

2

)∣∣(3.3)

≤ (Bχ + 2BLε)|ψ(m1) − ψ(m2)|
+ BL|ψ(mi) − ψ(m0)|

(∣∣x̃s
2 − x̃s

2

∣∣+ ∣∣x̃u
2 − x̃u

2

∣∣).
Proof. From (3.1), we have

x̄c
1 − x̄c

2 + x̄s
1 − x̄s

2 + x̄u
1 − x̄u

2(3.4)

= ψ(m1) − ψ(m2) + (
Πs

m1
x̃s

1 − Πs
m2

x̃s
2

)+ (
Πu

m1
x̃u

1 − Πu
m2

x̃u
2

)
.

Applying the projection Πc
m0

to (3.4), we obtain

x̄c
1 − x̄c

2 = Πc
m0

(ψ(m1) − ψ(m2)) + (
Πc

m0
− Πc

m1

)
Πs

m1

(
x̃s

1 − x̃s
2

)
+ Πc

m0

(
Πs

m1
− Πs

m2

)
x̃s

2 + (
Πc

m0
− Πc

m1

)
Πu

m1

(
x̃u

1 − x̃u
2

)
+ Πc

m0

(
Πu

m1
− Πu

m2

)
x̃u

2 .



Invariant manifolds

It follows from (H2) that∣∣x̄c
1 − x̄c

2 − (ψ(m1) − ψ(m2))
∣∣

≤ χ|ψ(m1) − ψ(m2)| + BL|ψ(m1) − ψ(m0)|
(∣∣x̃s

1 − x̃s
2

∣∣+ ∣∣x̃u
1 − x̃u

2

∣∣)
+ 2BLε|ψ(m1) − ψ(m2)|

≤ (σ + 2BLε)|ψ(m1) − ψ(m2)|
+ BL|ψ(m1) − ψ(m0)|

(∣∣x̃s
1 − x̃s

2

∣∣+ ∣∣x̃u
1 − x̃u

2

∣∣),
which is (3.2) for i = 1. The case for i = 2 can be obtained in the same
fashion.

Finally, applying Πs
m0

to (3.4), we have

x̄s
1 − x̄s

2 = Πs
m0

(ψ(m1) − ψ(m2)) + Πs
m0

Πs
m1

(
x̃s

1 − x̃s
2

)
+ Πs

m0

(
Πs

m1
− Πs

m2

)
x̃s

2 + Πs
m0

(
Πu

m1
− Πu

m0

)(
x̃u

1 − x̃u
2

)
+ Πs

m0

(
Πu

m1
− Πu

m2

)
x̃u

2 .

Hence, from (H2), we obtain (3.3) for the stable direction. Applying Πu
m0

yields the same estimate for the unstable direction. ��
Note that we did not require ε to be a small number. As a consequence,

we have the uniqueness of the local representation of points in N(m0, r, ε)
following a similar proof as in the paper [BLZ2] for overflowing invariant
manifolds.

Lemma 3.3. If mi ∈ Bc(m0, r), xα
i ∈ Xα

mi
, i = 1, 2, and

r < min

{
1

4L
,

r0

2

}
,

∣∣xα
i

∣∣ < ε ≤ 1

8BL
,(3.5)

for α = u, s, then

ψ(m1) + xu
1 + xs

1 = ψ(m2) + xu
2 + xs

2

if and only if m1 = m2, xs
1 = xs

2 and xu
1 = xu

2 .

Proof. Since |ψ(m1) − ψ(m2)| < 2r, from (H2), we have
∣∣(Πα

m2
|Xα

m1

)−1
xα

2

∣∣ ≤ (1 − 2Lr)−1
∣∣xα

2

∣∣ ≤ 2
∣∣xα

2

∣∣,
for α = u, s. Since m2 ∈ Bc(m0, r) ⊂ Bc(m1, r0), one can apply Lemma 3.2
to the points ψ(m1) and ψ(m2) + xs

2 + xu
2 , with m0 replaced by m1. Thus,

we have

|ψ(m1) − ψ(m2)| ≤ (χ + 4BLε)|ψ(m1) − ψ(m2)|,
where the assumption ψ(m1) + xs

1 + xu
1 = ψ(m2) + xs

2 + xu
2 is used. This

implies that m1 = m2, and completes the proof. ��
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Remark 3.4. If (H2’) is satisfied, one can obtain global uniqueness of repre-
sentation with this coordinate system in the tubular neighborhoods of ψ(M).

In the rest of the paper, we always assume that r and ε satisfy the
condition (3.5) in Lemma 3.3. Since each point in N(m0, r, ε) has a unique
representation, we call m the base point of ψ(m)+xs +xu ∈ N(m0, r, ε). Our
next step is to prove that N(m0, r, ε) is a neighborhood of ψ(Bc(m0, r)).
Let Pm0 denote the map from X to Xc

m0
which is given by Pm0(x) =

Πc
m0

(x − ψ(m0)). Then, we have

Lemma 3.5. Pm0 ◦ ψ is a diffeomorphism from Bc(m0, r0) to its image
which is an open subset of Xc

m0
.

The proof is exactly the same as that of Lemma 3.4 in [BLZ2] and so we
omit it. The next result states that any point in X close to ψ(m0) + xs

0 + xu
0

can be written as ψ(m) + xs + xu .

Lemma 3.6. Let r and ε satisfy (3.5) and r1 ∈ (0, r] be a number such that

Xc
m0

(r1) ⊂ Pm0ψ((Bc(m0, r))).

Then for any xα
0 ∈ Xα

m0
(ε), α = u, s, there exists θ > 0 such that for any

x ∈ X, satisfying ∣∣x − (
ψ(m0) + xs

0 + xu
0

)∣∣ < θ,

there exist m ∈ (Pm0ψ)−1 Xc
m0

(r1) and xα ∈ Xα
m(ε), α = u, s, such that

x = ψ(m) + xs + xu.

Here θ depends only on B, L, ε, r1, and the norms |xu
0 |, |xs

0|.
Proof. First note that, from Lemma 3.5, (Pm0ψ)−1 is C1 from Xc

m0
(r1) to

Bc(m0, r). To show that x can be written as x = ψ(m)+xs +xu, we consider
a map f from Xc

m0
(r2) to Xc

m0
, for some r2 < r1, which is defined as follows.

For any xc ∈ Xc
m0

(r2), let m = (Pm0ψ)−1xc. Notice that m ∈ Bc(m0, r). We
define

f(xc) = Πc
m0

Πc
m(x − ψ(m)) + xc.

For xc
i ∈ Xc

m0
(r2), i = 1, 2, letting mi = (Pm0ψ)−1xc

i , we compute
∣∣ f
(
xc

2

)− f
(
xc

1

)| = ∣∣Πc
m0

Πc
m2

(ψ(m1) − ψ(m2)) + xc
2 − xc

1

+ Πc
m0

(
Πc

m2
− Πc

m1

)
(x − ψ(m1))

∣∣
= ∣∣Πc

m0

(
Πc

m2
− Πc

m0

)
(ψ(m1) − ψ(m2))

+ Πc
m0

(
Πc

m2
− Πc

m1

)
(x − ψ(m1))

∣∣
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≤ BL|ψ(m2) − ψ(m1)|
(|ψ(m2) − ψ(m0)| + θ + ∣∣xs

0

∣∣
+ ∣∣xu

0

∣∣+ |ψ(m1) − ψ(m0)|
)

≤ 2BL
(
θ + ∣∣xs

0

∣∣+ ∣∣xu
0

∣∣+ 4r2
)∣∣xc

2 − xc
1

∣∣.
Therefore, by choosing θ and r2 small enough such that

2BL
(
θ + ∣∣xs

0

∣∣+ ∣∣xu
0

∣∣+ 4r2
)

< 1,(3.6)

we have that f is a contraction. When xc = 0, we have m = m0 and

| f(0)| = ∣∣Πc
m0

Πc
m0

(x − ψ(m0))
∣∣ ≤ Bθ.

This together with (3.6) implies that for a smaller θ such that

Bθ + 2BL
(
θ + ∣∣xs

0

∣∣+ ∣∣xu
0

∣∣+ 4r2
)
r2 ≤ r2,

we have f maps Xc
m0

(r2) into itself. Therefore, by the contraction mapping
theorem, there exists a unique xc ∈ Xc

m0
(r2) satisfying

f(xc) = xc.

This implies that for the fixed point xc and m = (Pm0ψ)−1xc, we have that
Πc

m(x − ψ(m)) = 0. Denote x − ψ(m) = xs + xu . We want to show that
|xs|, |xu| < ε. We note that

|xs| = ∣∣Πs
m(x − ψ(m))

∣∣
≤ Bθ + ∣∣Πs

mxs
0

∣∣+ ∣∣Πs
mxu

0

∣∣+ ∣∣Πs
m(ψ(m) − ψ(m0))

∣∣
≤ Bθ + ∣∣xs

0

∣∣+ ∥∥Πs
m − Πs

m0

∥∥(∣∣xs
0

∣∣+ ∣∣xu
0

∣∣+ |ψ(m) − ψ(m0)|
)

+ ∣∣Πs
m0

(
ψ(m) − ψ(m0) − xc

)∣∣
≤ Bθ + ∣∣xs

0

∣∣+ 2Lr2
(∣∣xs

0

∣∣+ ∣∣xu
0

∣∣+ 2r2
)+ 2Bχr2.

Thus, by choosing θ and r2 sufficiently small, we obtain |xs| < ε. The
estimate for xu is similar. This completes the proof of the lemma. ��

As a consequence of this lemma, N(m0, r, ε) is an open set containing
ψ(Bc(m0, r)).

In our hypothesis, M is a manifold without boundary. However, M is
only a model of ψ(M) which is our real interest and it is possible that ψ(M)
has boundary in X. To see this, we endow M with the Finsler structure
induced by the immersion ψ and derive a metric on M. However, M may
not be a complete metric space. Next, we state a lemma that can be used to
show that points in u(M) are away from the boundary. The proof is exactly
same as that of Lemma 3.6 in [BLZ2] and so we omit it.

Lemma 3.7. For r1 ≤ r and m0 ∈ M, if ψ(Bc(m0, r1)) is closed in X, then
Xc

m0
((1 − χ)r1) ⊂ Pm0(ψ(Bc(m0, r1))).
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4. Center-stable manifolds

The main result of this section is that, under assumptions (H1)–(H4) with η,
χ, σ , and inf A(δ) sufficiently small, T has a positively invariant manifold
Wcs close to ψ(M) and roughly in the direction of Xc and Xs. Our main
tool is the graph transform.

Throughout this section, we fix µ > 0 such that

0 < µ <
(1 − λ) min{1, a}

500BB1
,(4.1)

where a is taken to be 1 if (H3’) is not assumed. How small η, χ, and σ
have to be is determined by µ.

For δ > 0 and α = u, s, c let

Xα(δ) = {
(m, x) : m ∈ M, x ∈ Xα

m(δ)
}
.

Fixing r satisfying (3.5) and r > δ0 ≥ ε > 0, consider a map h : Xs(δ0) →
X, satisfying

h(m, xs) − (ψ(m) + xs) ∈ Xu
m(ε),(4.2)

for all (m, xs) ∈ Xs(δ0). We say h has Lipschitz constant µ if for any
m0 ∈ M, mi ∈ Bc(m0, δ0), and xs

i ∈ Xs
mi

(δ0), i = 1, 2, one has

(4.3)
∣∣Πu

m0

(
h
(
m1, xs

1

)− h
(
m2, xs

2

))∣∣ ≤ µ
(∣∣Πs

m0

(
h
(
m1, xs

1

)− h
(
m2, xs

2

))∣∣
+ ∣∣Πc

m0

(
h
(
m1, xs

1

)− h
(
m2, xs

2

))∣∣).
Definition 4.1. Define Γ = Γ(ε, µ, δ0) to be the collection of all maps h
from Xs(δ0) to X with Lipschitz constant µ. That is, h ∈ Γ if and only
if (4.2) and (4.3) hold.

Theorem 4.2. Fix µ satisfying (4.1). There exist constants χ0, σ0,A0 > 0,
determined (decreasingly) only by B, B1, 1

a , λ, 1
µ

, such that, if
inf A(δ) < A0 and χ ∈ (0, χ0), then there exists a constant δ∗

0 > 0,
determined (decreasingly) by 1

r0
, B, B1, a, λ, L, 1

sup{A<A0} ,
1
µ
, 1

χ
, such that,

when

σ < σ0, δ0 ≤ δ∗
0,

η

ε
< C0,

ε

δ0
∈
(

8σ0λ

1 − λ
,
µ(1 − λ)

10BB1

)

for some C0 depending only on B, B1, a, λ, there exists a unique h ∈ Γ so
that T(h(Xs(δ0))) ⊂ h(Xs(δ0)). Moreover, the image of h is a C J manifold.

The proof of this theorem is accomplished through a sequence of lem-
mas.
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Define ψ0 : Xs(δ0) → X by

ψ0(m, xs) = ψ(m) + xs.

Using (3.2) and (3.3), one may verify that ψ0 has Lipschitz constant

Bχ + BLδ0 + 4BLε

1 − 2Bχ − 2BLδ0 − 8BLε
.

Therefore, if χ, µ, δ0, and ε satisfy

χ ≤ µ

8B
δ0, ε ≤ µ

20BL

we have ψ0 ∈ Γ. Therefore, Γ is not empty. Define a metric on Γ by

‖h1 − h2‖ = sup
{∣∣h1(m, xs) − h2(m, xs)

∣∣ : (m, xs) ∈ Xs(δ0)
}
,

which makes Γ a complete metric space.
We first give local representations of Lipschitz maps h ∈ Γ. For any

(m0, xs
0) ∈ Xs(δ0), let δ > 0 be such that

δ < δ0 − ∣∣xs
0

∣∣ and ψ(Bc(m0, δ)) is closed in X,(4.4)

which roughly means that δ is less than the distance from (m0, xs
0) to

the boundary of Xs(δ0). For any h ∈ Γ, a local representation will be
constructed in a ρδ-neighborhood of (m0, xs

0), where ρ ∈ (0, 1) is needed
in the coordinate transformations.

Lemma 4.3. There exist a constant C0 > 0 depending only on B and
a constant C > 0 depending only on B, L, r0 such that, for any ρ ∈ [ 3

5 , 9
10 ]

and χ ∈ (0, 1
2) satisfying Cδ0 + C0χ < 1, any δ0 ≥ 2ε and δ > 0

satisfying (4.4), and any h ∈ Γ, there exists a map

f : Xc
m0

(ρδ) ⊕ Xs
m0

(ρδ) → Xu
m0

,

such that{
ψ(m0) + xs

0 + xc + xs + f(xc, xs) : xc ∈ Xc
m0

(ρδ), xs ∈ Xs
m0

(ρδ)
}

⊂ {
h(m, xs) : m ∈ Bc(ψ(m0), δ), xs ∈ Xs

m(δ0)
}
.

Furthermore, for any m ∈ Bc(m0, ρ
2δ), and xs ∈ Xs

m0
(ρ2δ), we have

h
(
m,Πs

m

(
xs

0 + xs
)) = ψ(m0) + xs

0 + x̄c + x̄s + f(x̄c, x̄s),

for some x̄α ∈ Xα
m0

(ρδ), α = c, s.

From the definition of Γ, f has Lipschitz constant µ. That is, for any
xα

i ∈ Xα
m0

, |xα
i | ≤ ρδ, for i = 1, 2, and α = s, c, one has∣∣ f
(
xc

2, xs
2

)− f
(
xc

1, xs
1

)∣∣ ≤ µ
(∣∣xs

2 − xs
1

∣∣+ ∣∣xc
2 − xc

1

∣∣).
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Proof. Let

h
(
m0, xs

0

) = ψ(m0) + xs
0 + xu

0 .

For m ∈ Bc(m0, ρ
2δ), xs

0 ∈ Xs
m(ρ2δ), since∣∣Πs

m

(
xs

0 + xs
)∣∣ ≤ (1 + Lδ)

(
δ0 − δ + ρ2δ

)
< δ0

we write

h
(
m,Πs

m

(
xs

0 + xs
)) = ψ(m) + Πs

m

(
xs

0 + xs
)+ Πu

m

(
xu

0 + xu
)

= ψ(m0) + x̄c + x̄s + x̄u,

where xu ∈ Xu
m0

and x̄α ∈ Xα
m0

. From (3.2) and (3.3), we obtain

|x̄c| ≤ (1 + χ + Cδ0)|ψ(m) − ψ(m0)| ≤ ρδ,

and
∣∣x̄s − xs

0

∣∣ ≤ (Bχ + Cδ0)|ψ(m) − ψ(m0)| + |xs| ≤ ρδ.

In order to finish the proof, we first show that for any xc ∈ Xc
m0

(ρδ) and
xs ∈ Xs

m0
(ρδ), there exists a unique xu ∈ Xu

m0
(δ0), such that

ψ(m0) + xs
0 + xc + xs + xu

is in the image of h.
For any point in the above form, we would like to find m ∈ M such that

it is in ψ(m) + Xu
m ⊕ Xs

m . Lemma 3.6 does not apply directly. However,
for small τ ∈ [0, 1], it follows from Lemma 3.6 that there exist unique
mτ ∈ Bc(m0, δ) and x̂α

τ ∈ Xα
m0

(ε̃) such that

ψ(m0) + xs
0 + τ(xs + xu + xc) = ψ(mτ ) + Πs

mτ
x̂s

τ + Πu
mτ

x̂u
τ

where, from Lemma 3.3,

ε̃ = 1

8BL
.

From Lemma 3.2, we have

|ψ(mτ ) − ψ(m0)| ≤ (1 − (χ + 2BLε̃))−1|τxc| ≤ C0δ

and
∣∣x̂α

τ

∣∣ ≤ δ0 + C0δ

for α = u, s. Therefore, using (3.2) and (3.3) again, we obtain

|ψ(mτ ) − ψ(m0)| ≤ (1 − (χ + Cδ0))
−1|τxc| < δ.(4.5)

Furthermore, we have,∣∣x̂s
τ − xs

0 − τxs
∣∣ ≤ (Bχ + Cδ0)|ψ(mτ ) − ψ(m0)|,

and
∣∣x̂u

τ − τxu
∣∣ ≤ (Bχ + Cδ0)|ψ(mτ ) − ψ(m0)|.
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Thus, ∣∣Πs
mτ

x̂s
τ

∣∣, ∣∣x̂s
τ

∣∣ < δ0, and
∣∣x̂u

τ

∣∣ ≤ δ0 + (Bχ + Cδ0)δ.(4.6)

From a continuation argument, there exist unique m ∈ Bc(m0, δ) and x̂α ∈
Xα

m0
such that

ψ(m0) + xs
0 + xs + xu + xc = ψ(m) + Πs

m x̂s + Πu
m x̂u

and m, x̂α satisfy (4.5) and (4.6).
Thus, we can define the map from Xu

m0
(δ0) to Xu

m0
:

E(xu) ≡ Πu
m0

(
h
(
m,Πs

m x̂s
)− ψ(m0)

)
.

We shall show that E is a contraction on Xu
m0

(δ0). For xu
i ∈ Xu

m0
(δ), let x̂α

i
be defined as above for i = 1, 2, and α = u, s. From (4.5), (3.2), and (3.3),
it follows that

|ψ(m2) − ψ(m1)| ≤ (χ + Cδ0)|ψ(m2) − ψ(m1)|
+ Cδ

(∣∣x̂u
2 − x̂u

1

∣∣+ ∣∣x̂s
2 − x̂s

1

∣∣),∣∣x̂s
2 − x̂s

1

∣∣ ≤ (Bχ + Cδ0)|ψ(m2) − ψ(m1)|
+ Cδ

(∣∣x̂u
2 − x̂u

1

∣∣+ ∣∣x̂s
2 − x̂s

1

∣∣),
and

∣∣x̂u
2 − x̂u

1

∣∣ ≤ (Bχ + Cδ0)|ψ(m2) − ψ(m1)|
+ Cδ

(∣∣x̂u
2 − x̂u

1

∣∣+ ∣∣x̂s
2 − x̂s

1

∣∣)+ ∣∣xu
2 − xu

1

∣∣,
which imply that

|ψ(m2) − ψ(m1)| + ∣∣x̂s
2 − x̂s

1

∣∣ ≤ Cδ
∣∣xu

2 − xu
1

∣∣
and

∣∣x̂u
2 − x̂u

1

∣∣ ≤ (1 + Cδ)
∣∣xu

2 − xu
1

∣∣.
Write h(mi,Π

s
mi

x̂s
i ) for i = 1, 2, as

h
(
mi,Π

s
mi

x̂s
i

) = ψ(mi) + Πs
mi

x̂s
i + Πu

mi
x̃u

i = ψ(m0) + x̄c
i + x̄s

i + x̄u
i ,

where x̃α
i , x̄α

i ∈ Xα
m0

. From (3.2) and (3.3), we obtain∣∣x̄c
2 − x̄c

1

∣∣+ ∣∣x̄s
2 − x̄s

1

∣∣ ≤ Cδ
(∣∣x̃u

2 − x̃u
1

∣∣+ ∣∣xu
2 − xu

1

∣∣).
Therefore, ∣∣x̃u

2 − x̃u
1

∣∣ ≤ (1 + Cδ)
∣∣x̄u

2 − x̄u
1

∣∣+ Cδ
∣∣xu

2 − xu
1

∣∣,
which implies∣∣x̄c

2 − x̄c
1

∣∣+ ∣∣x̄s
2 − x̄s

1

∣∣ ≤ Cδ
(∣∣x̄u

2 − x̄u
1

∣∣+ ∣∣xu
2 − xu

1

∣∣).
Since h is Lipschitz, we have,∣∣x̄u

2 − x̄u
1

∣∣ ≤ µ
(∣∣x̄c

2 − x̄c
1

∣∣+ ∣∣x̄s
2 − x̄s

1

∣∣) ≤ Cµδ
∣∣xu

2 − xu
1

∣∣.
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This shows that E is a contraction with Lipschitz constant Cµδ. On the
other hand, from (3.3), (4.5), and the definition of Γ,∣∣x̄u

i

∣∣ ≤ ∣∣x̃u
i

∣∣+ (Bχ + Cδ0)δ ≤ (1 − Lδ)−1ε + (Bχ + Cδ0)δ < δ0.

Therefore, E maps Xu
m0

(δ0) to itself. The contraction mapping principle
implies that there exists a unique fixed point xu .

By the construction of E and (4.5), there exists a unique m ∈ Bc(m0, δ)
and x̄c ∈ Xc

m0
, x̂s, x̄s ∈ Xs

m0
, and x̂u, x̃u ∈ Xu

m0
, such that |Πs

m x̂s| ≤ δ0,

ψ(m0) + xs
0 + xs + xu + xc = ψ(m) + Πs

m x̂s + Πu
m x̂u,

and h
(
m,Πs

m x̂s
) = ψ(m) + Πs

m x̂s + Πu
m x̃u = ψ(m0) + x̄c + x̄s + xu.

Inequalities (3.2), (3.3), and (4.5) immediately imply that x̂u = x̃u . By
defining f(xc, xs) = xu , we complete the proof. ��

Our next step is to construct a transformation F on the space Γ of
µ-Lipschitz maps. The basic idea is that, for any h ∈ Γ,

F (h)
(
Xs(δ0)

) ⊂ T −1
(
h
(
Xs(δ0)

))
,

i.e., the image of F (h) is contained in the preimage of the image of h under
the map T . As T is not assumed to be a homeomorphism, the preimage
of this Lipschitz section might be rather wild. However, the approximate
hyperbolicity condition (H3) guarantees that such a transformation F can
be defined.

Recall that the parameter η > 0 is from Definition 2.1 of approximate
inflowing manifolds. In this and the following sections, several lemmas will
have the same preamble as that of Theorem 4.2 and so we single it out and
refer to it as

(S) “Fix µ satisfying (4.1). There exist constants χ0, σ0,A0 > 0, deter-
mined (decreasingly) only by B, B1, 1

a , λ, 1
µ

, such that, if inf A(δ) < A0

and χ ∈ (0, χ0), then there exists a constant δ∗
0 > 0, determined (de-

creasingly) by 1
r0

, B, B1, a, λ, L , 1
sup{A<A0} ,

1
µ

, 1
χ

, such that, when

σ < σ0, δ0 ≤ δ∗
0,

η

ε
< C0,

ε

δ0
∈
(

8σ0λ

1 − λ
,
µ(1 − λ)

10BB1

)
(4.7)

for some C0 depending only on B, B1, a, λ”.

When (H3’) is not assumed, a is understood to be 1.

Lemma 4.4. With preamble (S), for any (m, xs) ∈ Xs(δ0), and xu ∈ Xu
m(ε),

there exist unique m1 ∈ Bc(u(m), r), xs
1 ∈ Xs

m1
( 1+λ

2 δ0), and xu
1 ∈ Xu

m1
( δ0

2 )
such that

T(ψ(m) + xs + xu) = ψ(m1) + xs
1 + xu

1 and |ψ(u(m)) − ψ(m1)| <
δ0

2
.



Invariant manifolds

Proof. Let m̄ = u(m). We have

|ψ(m̄) − T(ψ(m) + xs + xu)|
≤ |ψ(m̄) − T(ψ(m))| + |T(ψ(m) + xs + xu) − T(ψ(m))|
≤ η + B1(δ0 + ε).

According to Lemmas 3.6 and 3.7, there exist m1 ∈ Bc(m̄, r), xs
1 ∈ Xs

m1
,

and xu
1 ∈ Xu

m1
, such that

T(ψ(m) + xs + xu) = ψ(m1) + xs
1 + xu

1 with
∣∣xα

1

∣∣ ≤ 1 − χ

20BL
.

In order to complete the proof, we only need to estimate |xs
1|, |xu

1 |, and
|ψ(m̄) − ψ(m1)|. Write

ψ(m1) + xs
1 + xu

1 = ψ(m1) + Πs
m1

x̃s + Πu
m1

x̃u = ψ(m̄) + x̄c + x̄c + x̄u,

where x̃α, x̄α ∈ Xα
m̄ . For τ ∈ [0, 1], let

xτ = ψ(m) + τ(xs + xu).

We have

x̄α = Πα
m̄

∫ 1

0
DT(xτ )(x

s + xu)dτ + Πα
m̄(T(ψ(m)) − ψ(m̄)).

Therefore,∣∣x̄α − Πα
m̄ DT(ψ(m))(xs + xu)

∣∣ ≤ Bη + BA(2δ0)(|xu| + |xs|).
From condition (H3), we have

(4.8) |x̄u|, |x̄c| ≤ Bη + (BB1 + BA(2δ0))|xu| + (σ + BA(2δ0))|xs|,
|x̄s| ≤ Bη + (BB1 + BA(2δ0))|xu| + (λ + BA(2δ0))|xs|.

Therefore, the desired estimate follows immediately from (3.2) and (3.3)
and the uniqueness follows from Lemma 3.3. ��

In the following lemma, for m0 ∈ M, we denote m1 = u(m0). Since M
is approximately invariant, ψ(m1) is an approximation of T(ψ(m)).

Lemma 4.5. With preamble (S), for any h ∈ Γ and (m0, xs
0) ∈ Xs(δ0),

there exists a unique xu
0 ∈ Xu

m0
(ε), such that T(ψ(m0) + xs

0 + xu
0 ) lies in the

image of h.

Proof. From Lemma 4.4, we can write

T
(
ψ(m0) + xs

0

) = ψ(m∗) + xs
∗ + xu

∗ = ψ(m1) + x̄s
∗ + x̄u

∗ + x̄c
∗,
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where m∗ ∈ Bc(m1, r), xα∗ ∈ Xα
m∗ , and x̄α∗ ∈ Xα

m1
with

|ψ(m∗) − ψ(m1)| <
1

2
δ0,

∣∣xu
∗
∣∣ <

1

2
δ0,

∣∣xs
∗
∣∣ <

1 + λ

2
δ0.

From (3.2), (3.3), (4.7), and (4.8), we have∣∣xu
∗
∣∣ ≤ (1 + Cδ0)

(∣∣x̄u
∗
∣∣+ (Bχ + Cδ0)(1 − χ − Cδ0)

−1
∣∣x̄c

∗
∣∣)(4.9)

≤ 2Bη + (2σ + 2BA(δ0))
δ0

ε
ε ≤ 1 − λ

2λ
ε.

Let δ = 1−λ
2 δ0. For h ∈ Γ, Definition 2.1 and Lemma 4.3 imply that there

exists a Lipschitz representation f : Xc
m∗(

δ
2 ) × Xs

m∗(
δ
2 ) → Xu

m∗ of h near
(m∗, xs∗). For any xu ∈ Xu

m0
(ε), let

T
(
ψ(m0) + xs

0 + xu
) = m∗ + xs

∗ + xu
∗ + x̄c + x̄u + x̄s,

with x̄α ∈ Xα
m∗ . Then we have, from (H3) and (4.7), for α = s, c,

|x̄α| = ∣∣Πα
m∗
(
T
(
ψ(m0) + xs

0 + xu
)− T

(
ψ(m0) + xs

0

))∣∣ ≤ BB1ε ≤ δ

2
.

Define

E(xu) = xu + (
Πu

m1
DT(ψ(m0))

∣∣
Xu

m0

)−1
Πu

m1

(
f(x̄c, x̄s) − x̄u − xu

∗
)
.

We shall prove that E is a contraction on Xu
m0

(ε). In fact, for any xu
i ∈

Xu
m0

(ε), i = 1, 2, let x̄α
i ∈ Xα

m∗ be defined as above. Then∣∣x̄α
2 − x̄α

1 − Πα
m1

DT(ψ(m0))
(
xu

2 − xu
1

)∣∣(4.10)

≤ ∣∣Πα
m∗
(
T
(
ψ(m0) + xs

0 + xu
2

)− T
(
ψ(m0) + xs

0 + xu
1

))
− Πα

m1
DT(ψ(m0))

(
xu

2 − xu
1

)∣∣
≤ (Cδ0 + BA(2δ0))

∣∣xu
2 − xu

1

∣∣,
for α = c, s, u. Since f has Lipschitz constant µ, from (H3), we obtain
∣∣E(xu

2

)− E
(
xu

1

)∣∣ =
∣∣∣(Πu

m1
DT(ψ(m0))

∣∣
xu

m0

)−1

× Πu
m1

[−(x̄u
2 − x̄u

1

)+ Πu
m1

DT(ψ(m0))
(
xu

2 − xu
1

)
+ f

(
x̄c

2, x̄s
2

)− f
(
x̄c

1, x̄s
1

)]∣∣∣
≤ (Cδ0 + C0A(2δ0))

∣∣xu
2 − xu

1

∣∣
+ (1 + Cδ0)λµ

(∣∣x̄s
2 − x̄s

1

∣∣+ ∣∣x̄c
2 − x̄c

1

∣∣)
≤ (Cδ0 + C0A(2δ0) + 3BB1λµ)

∣∣xu
2 − xu

1

∣∣
≤ 1 − λ

10

∣∣xu
2 − xu

1

∣∣,
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where (4.1), (4.10), and (4.7) were used. Recall that C0 depends only
on B, B1, and λ. Finally, when xu = 0, we have x̄α = 0 for α = c, s, u.
Consequently, from (4.9)

|E(0)| = ∣∣(Πu
m1

DT(ψ(m0))
∣∣

xu
m0

)−1
Πu

m1

(
f(0, 0) − xu

∗
)∣∣

≤ (1 + Cδ0)λ
(
ε + ∣∣xu

∗
∣∣) ≤ 2λ + 1

3
ε.

Therefore, E is a contraction on Xu
m0

(ε). Let xu
0 ∈ Xu

m0
(ε) be the unique

fixed point, then clearly it satisfies the requirement in the lemma. ��
Fixing ρ ∈ [ 3

5 , 9
10 ], Lemma 4.5 allows us to define a map h̃ : Xs(δ0) → X

by

h̃
(
m0, xs

0

) = ψ(m0) + xs
0 + xu

0 ,

where xu
0 ∈ Xu

m0
(ε) and it satisfies

T
(
h̃
(
Xs(δ0)

)) ⊂ h
(
Xs(δ0)

)
.

The next lemma states that h̃ has Lipschitz constant µ and thus h̃ ∈ Γ.

Lemma 4.6. With preamble (S), for any h ∈ Γ, h̃ defined above has Lip-
schitz constant µ.

Proof. Taking any m0 ∈ M, mi ∈ Bc(m0, δ0), and xs
i ∈ Xs

mi
(δ0), i = 1, 2,

let

(4.11) h̃
(
mi, xs

i

) = ψ(mi) + xs
i + xu

i = ψ(mi) + Πs
mi

xs∗
i + Πu

mi
xu∗

i

= ψ(m0) + x̄c
i + x̄s

i + x̄u
i ,

where xu
i ∈ Xu

mi
(ε) and xα∗

i , x̄α
i ∈ Xα

m0
. According to (4.3), we need to prove∣∣x̄u

2 − x̄u
1

∣∣ ≤ µ
(∣∣x̄c

2 − x̄c
1

∣∣+ ∣∣x̄s
2 − x̄s

1

∣∣).(4.12)

From the definition of h̃, for i = 1, 2, there exist (m̃i, x̃s
i ) ∈ Xs(δ0),

x̃u
i ∈ Xu

mi
(ε), such that

T
(
h̃
(
mi, xs

i

)) = h
(
m̃i, x̃s

i

) = ψ(m̃i) + x̃s
i + x̃u

i = ψ(m̂) + x̂c
i + x̂s

i + x̂u
i ,

(4.13)

where m̂ = u(m0), x̂α
i ∈ Xα

m̂ , i = 1, 2, and α = c, s, u. Since∣∣xs∗
i

∣∣ ≤ (1 − Lδ0)
−1δ0,

∣∣xu∗
i

∣∣ ≤ (1 − Lδ0)
−1ε,

(4.11) and inequalities (3.2) and (3.3) imply∣∣x̄c
i

∣∣ ≤ (1 + χ + Cδ0)δ0,
∣∣x̄s

i

∣∣ ≤ (1 + Bχ + Cδ0)δ0,

and
∣∣x̄u

i

∣∣ ≤ ε + (Bχ + Cδ0)δ0.
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In order to prove (4.12), we only need to consider the case when

µ
(∣∣x̄c

2 − x̄c
1

∣∣+ ∣∣x̄s
2 − x̄s

1

∣∣) ≤ 2ε + (2Bχ + Cδ0)δ0.(4.14)

Using (4.13), we have, for i = 1, 2,

|ψ(m̃i) − ψ(m̂)| ≤ ∣∣x̃s
i

∣∣+ ∣∣x̃u
i

∣∣+ ∣∣T (h̃(mi, xs
i

))− T(ψ(m0))
∣∣+ η

≤ η + C0ε + C0δ0 ≤ C0δ0.

From Lemma 4.4, mi ∈ Bc(m̂, r). For τ ∈ [0, 1], let

xτ = ψ(m0) + (1 − τ)x̄c
1 + τ x̄c

2 + (1 − τ)x̄s
1 + τ x̄s

2 + (1 − τ)x̄u
1 + τ x̄u

2 .

Write

h
(
m̃2, x̃s

2

)− h
(
m̃1, x̃s

1

) = T
(
h̃
(
m2, xs

2

))− T
(
h̃
(
m1, xs

1

))

=
∫ 1

0
DT(xτ )dτ

(
x̄c

2 − x̄c
1 + x̄s

2 − x̄s
1 + x̄u

2 − x̄u
1

)
.

We obtain, from (4.14) and (4.7), for α = c, s, u,

∣∣x̂α
2 − x̂α

1

∣∣ =
∣∣∣Πα

m̂

∫ 1

0
DT(xτ )

(
x̄c

2 − x̄c
1 + x̄s

2 − x̄s
1 + x̄u

2 − x̄u
1

)
dτ

∣∣∣
≤ 1

µ

(
4BB1ε + C0χδ0 + Cδ2

0

) ≤ δ0

2
.

From inequality (3.2),

|ψ(m2) − ψ(m1)| < δ0.

Let

h
(
m̃2, x̃s

2

) = ψ(m̃2) + x̃s
2 + x̃u

2 = ψ(m̃1) + x̃c
∗ + x̃s

∗ + x̃u
∗ .

Since h ∈ Γ, we have∣∣x̃u
∗ − x̃u

1

∣∣ ≤ µ
(∣∣x̃c

∗
∣∣+ ∣∣x̃s

∗ − x̃s
1

∣∣).(4.15)

On the other hand, for α = c, s, u,

x̃α
∗ − x̃α

1 = Πα
m̃1

∫ 1

0
DT(xτ )

(
x̄c

2 − x̄c
1 + x̄s

2 − x̄s
1 + x̄u

2 − x̄u
1

)
dτ.

We have ∣∣x̃α
∗ − x̃α

1 − Πα
m̂ DT(ψ(m0))

(
x̄c

2 − x̄c
1 + x̄s

2 − x̄s
1 + x̄u

2 − x̄u
1

)∣∣
≤ (Cδ0 + BA(3δ0))

(∣∣x̄c
2 − x̄c

1

∣∣+ ∣∣x̄s
2 − x̄s

1

∣∣+ ∣∣x̄u
2 − x̄u

1

∣∣)
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where x̃c
1 is understood as 0. This implies

∣∣x̃u
∗ − x̃u

1

∣∣ ≥ ∥∥(Πu
m̂ DT(ψ(m0))

∣∣
xu

m0

)−1∥∥−1∣∣x̄u
2 − x̄u

1

∣∣
− (σ + Cδ0 + BA(3δ0))

(∣∣x̄c
2 − x̄c

1

∣∣+ ∣∣x̄s
2 − x̄s

1

∣∣+ ∣∣x̄u
2 − x̄u

1

∣∣)
and ∣∣x̃s

∗ − x̃s
1

∣∣+ ∣∣x̃c
∗
∣∣

≤ λ
∣∣x̄s

2 − x̄s
1

∣∣+ ∥∥Πc
m̂ DT(ψ(m0))

∣∣
xc

m0

∥∥∣∣x̄c
2 − x̄c

1

∣∣+ 2BB1

∣∣x̄u
2 − x̄u

1

∣∣
+ (σ + Cδ0 + BA(3δ0))

(∣∣x̄c
2 − x̄c

1

∣∣+ ∣∣x̄s
2 − x̄s

1

∣∣+ ∣∣x̄u
2 − x̄u

1

∣∣).
Therefore, from (4.15) and (H3), we obtain∣∣x̄u

2 − x̄u
1

∣∣
≤ λµ + 2σ + Cδ0 + 2BA(3δ0)

1 − 2BB1λµ − 2λσ − Cδ0 − 2BA(3δ0)

(∣∣x̄c
2 − x̄c

1

∣∣+ ∣∣x̄s
2 − x̄s

1

∣∣),
which, along with condition (4.1) on µ, implies (4.12). ��

From Lemmas 4.5 and 4.6, we can define a transform F on the space Γ
as

F (h) = h̃.

Since h̃ is the unique map in Γ such that

T
(
h̃
(
Xs(δ0)

)) ⊂ h
(
Xs(δ0)

)
,

a map h ∈ Γ is a fixed point of F if and only if h(Xs(δ0)) is positively
invariant under T . We shall prove that F is a contraction on Γ, the essential
step being the following lemma.

Let h ∈ Γ, (m0, xs
0) ∈ Xs(δ0), and

h̃
(
m0, xs

0

) = ψ(m0) + xs
0 + xu

0 .

For any xu
1 ∈ Xu

m0
(2ε), from Lemma 4.4 applied for a slightly different

ε > 0, we can write

T
(
ψ(m0) + xs

0 + xu
1

) = ψ(m̄1) + x̄s
1 + x̄u

1

with
∣∣x̄s

1

∣∣ <
1 + λ

2
δ0 and

∣∣x̄u
1

∣∣ <
δ0

2
.

Let h(m̄1, x̄s
1) = ψ(m̄1) + x̄s

1 + x̃u
0 , under the conditions in Lemmas 4.5

and 4.6, we have

Lemma 4.7. There exists λ1 ∈ (λ, 1), independent of h, m0, xs
0, xu

0 , xu
1 ,

such that ∣∣xu
1 − xu

0

∣∣ ≤ λ1

∣∣x̄u
1 − x̃u

0

∣∣.
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Proof. Let m̃0 = u(m0) and

T
(
h̃
(
m0, xs

0

)) = h
(
m̄0, x̄s

0

) = ψ(m̄0) + x̄s
0 + x̄u

0 = ψ(m̄1) + x̂c
0 + x̂s

0 + x̂u
0 ,

where x̂α
0 ∈ Xα

m̄1
and x̄α

0 ∈ Xα
m̄0

(δ0). From Lemma 4.4,

|ψ(m̃0) − ψ(m̄0)|, |ψ(m̃0) − ψ(m̄1)| ≤ δ0

2
.

For α = c, s, u, write

x̄α
1 − x̂α

0 = Πα
m̄1

∫ 1

0
DT

(
ψ(m0) + xs

0 + (1 − τ)xu
0 + τxu

1

)(
xu

1 − xu
0

)
dτ

and we have∣∣x̄α
1 − x̂α

0 − Πα
m̃0

DT(ψ(m0))
(
xu

1 − xu
0

)∣∣ ≤ (Cδ0 + BA(2δ0))
∣∣xu

1 − xu
0

∣∣,
where it is understood that x̄c

1 = 0. Therefore, from (H3), we obtain∣∣x̂c
0

∣∣+ ∣∣x̂s
0 − x̄s

1

∣∣ ≤ (2BB1 + Cδ0 + BA(2δ0))
∣∣xu

1 − xu
0

∣∣∣∣x̂u
0 − x̄u

1

∣∣ ≥ (
λ−1 − Cδ0 − BA(2δ0)

)∣∣xu
1 − xu

0

∣∣.
On the other hand, since h has Lipschitz constant µ,∣∣x̃u

0 − x̂u
0

∣∣ ≤ µ
(∣∣x̂c

0

∣∣+ ∣∣x̄s
1 − x̂s

0

∣∣) ≤ µ(2BB1 + Cδ0 + BA(2δ0))
∣∣xu

1 − xu
0

∣∣.
The lemma immediately follows from these inequalities and (4.1). ��
Corollary 4.8. F is a contraction on Γ, with Lipschitz constant λ1.

To prove the corollary, taking any h, h1 ∈ Γ and (m0, xs
0), one obtains

the estimate of ∣∣F (h1)
(
m0, xs

0

)− F (h)
(
m0, xs

0

)∣∣
from Lemma 4.7 by letting xu

1 = F (h1)(m0, xs
0) − ψ(m0) − xs

0.
Thus, there exists a unique fixed point h0 ∈ Γ of F and

Wcs ≡ h0
(
Xs(δ0)

)
is positively invariant under T . We call it the center-stable manifold around
ψ(M).

Remark 4.9. When (H2’) holds, h0 is an embedding.

The higher order smoothness of Wcs follows from Theorem B and The-
orem 7.3 in [BLZ2] and so the proof of Theorem 4.2 is complete.

To end this section, we present the following characterization of Wcs.
Let U be the tubular neighborhood of ψ(M),

U = {
ψ(m) + xs + xu : xs ∈ Xs

m(δ0), xu ∈ Xu
m(2ε)

}
.
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Proposition 4.10. For any x0 ∈ U, x0 ∈ Wcs if and only if T (n)(x0) ∈ U
for all n = 1, 2, . . . .

Proof. Since Wcs is positively invariant, it is clear that if x0 ∈ Wcs, then
T (n)(x0) ∈ Wcs ⊂ U for all n > 0. On the other hand, if T (n)(x0) ∈ U for
all n > 0, let

xn = T (n)(x0) = mn + xs
n + xu

n , xs
n ∈ Xs

mn
(δ0), xu

n ∈ Xu
mn

(ε), n > 0.

From Lemma 4.7, we have
∣∣xu

0 − h0
(
m0, xs

0

)∣∣ ≤ λn
1

∣∣xu
n − h0

(
mn, xs

n

)∣∣ ≤ 3λn
1ε → 0, as n → ∞.

Therefore, x0 ∈ Wcs. ��

5. Stable foliations

In this section, under the assumptions (H1)–(H4) and (H3’), we shall con-
struct stable fibers inside the positively invariant center-stable manifold. In
this construction, please note that no invariant center-manifold is assumed
to exist in the center-stable manifold. Recall, from the notations used in
Sect. 4, that Wcs = h0(Xs(δ0)) where h0 ∈ Γ. Therefore, (m, xs) can be
used as a coordinate system on Wcs. Let

W̃cs =
{

h0(m, xs) : ψ(Bc(m, δ0)) is closed in X, xs ∈ Xs
m

(
δ0

5

)}
.

We prove that, under the condition of Theorem 2.4 and for possibly smaller
δ0, each point in W̃cs belongs to a stable fiber. The stable fibers form a con-
tinuous family of C J submanifolds which are roughly in the stable direction.
They are either identical or disjoint. Furthermore, T maps each fiber en-
tirely into another one and is contractive. The reason that we introduce
the open subset W̃cs in Wcs is to avoid technical complications near its
boundary.

In [BLZ3], stable (unstable) foliations inside the center-stable (center-
unstable) manifold of a compact normally hyperbolic invariant manifold
(without boundary) are constructed by a graph transform method. The same
method also works here but instead, we use a Lyapunov–Perron type method
based on series. Note that our normal hyperbolicity assumption is only
pointwise.

For any y0 = h0(m0, xs
0) ∈ W̃cs and n ≥ 0, from Definition 2.1,

Lemma 4.4, and the invariance of Wcs, there exists yn = h0(mn, xs
n) ∈ W̃cs

such that

T(yn−1) = yn = ψ(mn) + xs
n + xu

n , mn ∈ Bc(u(mn−1), r).(5.1)
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Fix

ρ = 9

10
, δ = 4

5
δ0,

and let

fn : Xc
mn

(ρδ) ⊕ Xs
mn

(ρδ) → Xu
mn

be the map defined in Lemma 4.3 at yn. Since Wcs is C J , fn is a C J map.
From the invariance of Wcs, for any n ≥ 0, T induces a map Sn such that

T
(
ψ(mn) + xs

n + xc + xs + fn(x
c, xs)

)
(5.2)

= ψ(mn+1) + xs
n+1 + Sn(x

c, xs) + fn+1
(
Sn(x

c, xs)
)
.

The domain of Sn is at least a neighborhood of 0 in Xc
mn

(ρδ)⊕ Xs
mn

(ρδ) and
Sn is as smooth as T . It is clear that Sn(0) = 0. Let for α = c, s,

Sα
n = Πα

mn+1
Sn, Aα

n = DSα
n (0)

∣∣
Xα

mn
,

Rn = (
Rc

n, Rs
n

) ≡ (
Sc

n − Ac
n, Ss

n − As
n

)
,

where we slightly abused the notation by also using Aα
n to represent its 0

extension to Xc
mn

⊕ Xs
mn

. For DSn and related linear operators, we use the
operator norm

‖DSn‖ ≡ sup
{∣∣DSc

n(x̄
c, x̄s)

∣∣+ ∣∣DSs
n(x̄

c, x̄s)
∣∣ : |x̄c| + |x̄s| = 1

}
.

Let λ̄ = 1+λ
2 . We have the following technical lemma.

Lemma 5.1. With preamble (S), the domain of Sn contains Xc
mn

(
ρδ

2BB1
) ⊕

Xs
mn

(ρδ) and for 2 ≤ k ≤ J,

∥∥DSα
n

∥∥ ≤ 2BB1,
∥∥As

n

∥∥ ≤ λ̄ min
{
1,
∥∥(Ac

n

)−1∥∥−1}
,

a

2
≤ ∥∥(Ac

n

)−1∥∥−1
,∥∥DRα

n

∥∥ ≤ σ + Cδ0 + 3BB1µ + 3BA(2δ0),
∥∥DkRα

n

∥∥ ≤ C.

Remark 5.2. In this section, the conditions on parameter are always proved
to be independent of the specific orbit {yn} unless otherwise specified.

Proof. From (5.2), we have, for α = c, s,

DSα
n (xc, xs)(5.3)

= Πα
mn+1

DT
(
ψ(mn) + xs

n + xc + xs + fn(x
c, xs)

) ◦ (I + Dfn(x
c, xs)

)
where I represents the identity operator on Xc

mn
⊕ Xs

mn
. The conclusion

concerning the domain of Sn and the estimate on DSα
n follow immediately
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from (5.3). Since |ψ(mn+1) − ψ(u(mn))| ≤ δ0
2 by Lemma 4.4, substituting

xc = 0 and xs = 0 into (5.3), we obtain∥∥Aα
n − Πα

u(mn)DT(ψ(mn))
∣∣

Xα
mn

∥∥ ≤ BB1µ + Cδ0 + BA(δ0),

which, along with (H3’), implies the estimates on Aα
n . The estimate on

‖DRα
n‖ follows similarly. From Theorem 7.3 in [BLZ2], Dkfn is bounded

with an upper bound independent of the orbit {yn}. Differentiating (5.3)
multiple times, we obtain the estimate on ‖DkRα

n‖. ��
Suppose

{(
x̄c

n, x̄s
n

) ∈ Xc
mn

(
ρδ

2BB1

)
⊕ Xs

mn
(ρδ) : n ≥ 0

}
(5.4)

is an orbit of {Sn : n ≥ 0}, i.e.,
(
x̄c

n+1, x̄s
n+1

) = Sn
(
x̄c

n, x̄s
n

)
, n ≥ 0.(5.5)

Then, for α = c, s, and n2 ≥ n1 ≥ 0,

x̄α
n2

= Aα
n2−1 x̄α

n2−1 + Rα
n2−1

(
x̄c

n2−1, x̄s
n2−1

)
= Aα

n2−1Aα
n2−2 x̄α

n2−2 + Aα
n2−1Rα

n2−2

(
x̄c

n2−2, x̄s
n2−2

)+ Rα
n2−1

(
x̄c

n2−1, x̄s
n2−1

)
=
( ∏

n1≤k≤n2−1

Aα
k

)
x̄α

n1
+

∑
n1≤k≤n2−1

( ∏
k+1≤l≤n2−1

Aα
l

)
Rα

k

(
x̄c

k, x̄s
k

)
.

Therefore, for n0 > n ≥ 0,

x̄s
n =

( ∏
0≤k≤n−1

As
k

)
x̄s

0 +
∑

0≤k≤n−1

( ∏
k+1≤l≤n−1

As
l

)
Rs

k

(
x̄c

k, x̄s
k

)
(5.6)

x̄c
n =

( ∏
n≤k≤n0−1

Ac
k

)−1
x̄c

n0
−

∑
n≤k≤n0−1

( ∏
n≤l≤k

Ac
l

)−1
Rc

k

(
x̄c

k, x̄s
k

)
.(5.7)

If we also assume this orbit satisfies

lim
n0→∞

( ∏
0≤k≤n0−1

Ac
k

)−1
x̄c

n0
= 0

then we have

x̄c
n = −

∑
n≤k<+∞

( ∏
n≤l≤k

Ac
l

)−1
Rc

k

(
x̄c

k, x̄s
k

)
.(5.8)

Therefore, such orbits are solutions to systems of equations (5.6) and (5.8).
We will use the contraction mapping principle to find such orbits.
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Fix γ ∈ ( 1
3 + 2λ̄

3 , 2
3 + λ̄

3 ). For any

z =
{(

x̄c
n, x̄s

n

) ∈ Xc
mn

(
ρδ

2BB1

)
⊕ Xs

mn
(ρδ) : n ≥ 0

}
,(5.9)

let

‖z‖γ = sup
n≥0,n≥ j≥0

γ−n
( ∏

j≤k≤n−1

∥∥(Ac
k

)−1∥∥)(∣∣x̄c
n

∣∣+ ∣∣x̄s
n

∣∣).(5.10)

Define

Ωs
γ =

{
z =

{(
x̄c

n, x̄s
n

) ∈ Xc
mn

(
ρδ

2BB1

)
⊕ Xs

mn
(ρδ) : n ≥ 0

}
:

‖z‖γ < ∞
}
,

Γs
γ = {

z ∈ Ωs
γ : ‖z‖γ ≤ ρδ

}
.

It is easy to see that Ωs
γ is a Banach space and Γs

γ is a closed subset in Ωs
γ .

For any xs ∈ Xs
m0

( δ0
2 ) and any sequence z = {(x̄c

n, x̄s
n) : n ≥ 0} ∈ Γs

γ , for
n ≥ 0 let

x̃s
n =

( ∏
0≤k≤n−1

As
k

)
xs +

∑
0≤k≤n−1

( ∏
k+1≤l≤n−1

As
l

)
Rs

k

(
x̄c

k, x̄s
k

)
(5.11)

x̃c
n = −

∑
n≤k<+∞

( ∏
n≤l≤k

Ac
l

)−1
Rc

k

(
x̄c

k, x̄s
k

)
(5.12)

F s(xs, z) = z̃ = {(
x̃c

n, x̃s
n

) : n ≥ 0
}
.(5.13)

We shall prove that, for any xs ∈ Xs
m0

( δ0
2 ), F s(xs, ·) is a contraction on Γs

γ .
Since {Rα

n } has a uniform Lipschitz constant according to Lemma 5.1, it is
easy to verify that z ∈ Γs

γ is an orbit of {Sn} if and only if it is a fixed point
of F s(x̄s

0, · ) where x̄s
0 is the 0-th stable component of z.

Lemma 5.3. With preamble (S), for any xs ∈ Xs
m0

( δ0
2 ), F s(xs, · ) maps Γs

γ

to itself and has a Lipschitz constant bounded by

12

a(1 − λ)
(σ + Cδ0 + 3BB1µ + 3BA(2δ0)).

Note that, from the proof, the conditions on the parameters are independ-
ent of γ .

Proof. Let zi = {(x̄c
i,n, x̄s

i,n)} ∈ Γs
γ and z̃i = {(x̃c

i,n, x̃s
i,n)} be defined as

in (5.11)–(5.13) for i = 1, 2. From (5.11) and Lemma 5.1, we have, for any
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n > 0, 0 ≤ j ≤ n,

γ−n
( ∏

j≤k≤n−1

∥∥(Ac
k

)−1∥∥)∣∣x̃s
2,n − x̃s

1,n

∣∣

≤ γ−n
∑

0≤k≤n−1

λ̄n−k−1
( ∏

j≤l≤k

∥∥(Ac
l

)−1∥∥)∣∣Rs
k

(
x̄c

2,k, x̄s
2,k

)− Rs
k

(
x̄c

2,k, x̄s
1,k

)∣∣

≤ 2γ

a

∑
0≤k≤n−1

(
λ̄

γ

)n−k−1∥∥DRα
k

∥∥‖z2 − z1‖γ

≤ 12(σ + Cδ0 + 3BB1µ + 3BA(2δ0))

a(1 − λ)
‖z2 − z1‖γ .

For n = 0, it is clear that x̃s
1 = x̃s

2 = xs. On the other hand, for n ≥ 0,
0 ≤ j ≤ n, we also have

γ−n
( ∏

j≤k≤n−1

∥∥(Ac
k

)−1∥∥)∣∣x̃c
2,n − x̃c

1,n

∣∣

≤ γ−n
∑

n≤k<+∞

( ∏
j≤l≤k

∥∥(Ac
l

)−1∥∥)∣∣Rc
k

(
x̄c

2,k, x̄s
2,k

)− Rc
k

(
x̄c

1,k, x̄s
1,k

)∣∣

≤ 2

a

∑
n≤k<+∞

γ k−n
∥∥DRα

k

∥∥‖z2 − z1‖γ

≤ 12(σ + Cδ0 + 3BB1µ + 3BA(2δ0))

a(1 − λ)
‖z2 − z1‖γ .

Finally, using Lemma 5.1, it is easy to show that ‖F s(xs, 0)‖γ ≤ δ0
2 .

Therefore, one finds that F s(xs, ·) maps Γs
γ to itself and is a contraction

on Γs
γ . ��

Lemma 5.3 implies that, for any xs ∈ Xs
m0

( δ0
2 ), there exists a unique

g(xs) ∈ Γs
γ such that F s(xs, g(xs)) = g(xs). Let g(xs) = {(x̄c

n, x̄s
n)}. In the

following, we will investigate the dependence of g(xs) on xs. Firstly, F s is
linear in xs and

DxsF s =
{(

0,
∏

0≤k≤n−1

As
k

)}
∈ L

(
Xs

m0
,Ωs

γ

)
.(5.14)

In addition, we have

Lemma 5.4. F s(xs, · ) ∈ C J−1,1(Γs
γ ). Furthermore, for any γ1 ∈ (γ, 2

3 + λ̄
3 ),

F s(xs, · ) ∈ C J(Γs
γ ,Γs

γ1
).

Recall that T is assumed to be a C J map on X. We also notice that
Γs

γ ⊂ Γs
γ1

when γ1 > γ .
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Proof. Let z = {(x̄c
n, x̄s

n)} ∈ Γs
γ and ẑi = {(x̂c

i,n, x̂s
i,n)} ∈ Ωs

γ for i =
1, 2, . . . , K ≤ J . Let

x̃s
n =

∑
0≤k≤n−1

( ∏
k+1≤l≤n−1

As
l

)
DKRs

k

(
x̄c

k, x̄s
k

)[(
x̂c

1,k, x̂s
1,k

)⊗ · · · ⊗ (
x̂c

K,k, x̂s
K,k

)](5.15)

and

x̃c
n = −

∑
n≤k<+∞

( ∏
n≤l≤k

Ac
l

)−1
DKRc

k

(
x̄c

k, x̄s
k

)[(
x̂c

1,k, x̂s
1,k

)⊗ · · · ⊗ (
x̂c

K,k, x̂s
K,k

)]
.

(5.16)

Then, formally, we have

DK
z F s(xs, z)(ẑ1, . . . , ẑK) = z̃ = {(

x̃c
n, x̃s

n

)}
.(5.17)

We first show that DK
z F s is a well-defined bounded multilinear operator for

1 ≤ K ≤ J . Thus, F s is C J−1,1. From (5.15) and Lemma 5.1, we have, for
any n ≥ 0 and 0 ≤ j ≤ n,

γ−n
( ∏

j≤k≤n−1

∥∥(Ac
k

)−1∥∥)∣∣x̃s
n

∣∣

≤ Cγ−n
∑

0≤k≤n−1

λ̄n−k−1
( ∏

j≤l≤k

∥∥(Ac
l

)−1∥∥)(∣∣x̂c
1,k

∣∣+ ∣∣x̂s
1,k

∣∣)

× γ k(K−1)‖ẑ2‖γ · · · ‖ẑK‖γ

≤ C
∑

0≤k≤n−1

γ−nλ̄n−k−1γ Kk‖ẑ1‖γ · · · ‖ẑK‖γ ≤ C

γ − λ̄
‖ẑ1‖γ · · · ‖ẑK‖γ .

On the other hand, we have

γ−n
( ∏

j≤k≤n−1

∥∥(Ac
k

)−1∥∥)∣∣x̃c
n

∣∣

≤ Cγ−n
∑

n≤k<+∞

( ∏
j≤l≤k

∥∥(Ac
l

)−1∥∥)(∣∣x̂c
1,k

∣∣+ ∣∣x̂s
1,k

∣∣)γ (K−1)k‖ẑ2‖γ · · · ‖ẑK‖γ

≤ C

1 − γ
‖ẑ1‖γ · · · ‖ẑK‖γ .

These estimates imply that DK
z F s is a bounded K -linear operator for 1 ≤

K ≤ J and thus F s is C J−1,1 in z.
We next prove the continuity of DK

z F s in z when considered as a K -lin-
ear map from Ωs

γ to Ωs
γ1

for γ1 ∈ (γ, 2
3 + λ̄

3 ). For zi = {(x̄c
i,n, x̄s

i,n)} ∈ Γs
γ ,

i = 1, 2, let

DK
z F s

(
xs, zi

)
(ẑ1, . . . , ẑK ) = z̃i = {(

x̃c
i,n, x̃s

i,n

)}
,
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defined as in (5.15) and (5.16). Much as in the above estimates, for any
n ≥ 0 and 0 ≤ j ≤ n, one has

γ−n
1

( ∏
j≤k≤n−1

∥∥(Ac
k

)−1∥∥)∣∣x̃s
2,n − x̃s

1,n

∣∣(5.18)

≤ 2

aλ̄

(
γ

γ1

)n

‖ẑ1‖γ · · · ‖ẑK‖γ

×
∑

0≤k≤n−1

(
λ̄

γ

)n−k∥∥DKRs
k

(
x̄c

2,k, x̄s
2,k

)− DKRs
k

(
x̄c

1,k, x̄s
1,k

)∥∥

γ−n
1

( ∏
j≤k≤n−1

∥∥(Ac
k

)−1∥∥)∣∣x̃c
2,n − x̃c

1,n

∣∣(5.19)

≤ 2

a

(
γ

γ1

)n

‖ẑ1‖γ · · · ‖ẑK‖γ

×
∑

n≤k≤∞
γ k−n

∥∥DKRs
k

(
x̄c

2,k, x̄s
2,k

)− DKRs
k

(
x̄c

1,k, x̄s
1,k

)∥∥.
Note that the right sides of the above two inequalities are both bounded by

C‖ẑ1‖γ · · · ‖ẑK‖γ

(
γ

γ1

)n

.

Therefore, for fixed z1 and any ω > 0, there exists N > 0 such that

γ−n
1

( ∏
j≤k≤n−1

∥∥(Ac
k

)−1∥∥)(|x̃s
2,n − x̃s

1,n

∣∣+ ∣∣x̃c
2,n − x̃c

1,n

∣∣)

≤ ω‖ẑ1‖γ · · · ‖ẑK‖γ

when n > N. For n ≤ N, from the dominant convergence theorem, the
above inequality still holds when ‖z2 − z1‖γ is sufficiently small. This
proves that F s is C J from Γs

γ to Γs
γ1

. ��
It is clear from Lemma 5.4 that the fixed point g(xs ) of F s(xs, · ) is C J−1,1

in xs. A less obvious consequence of Lemma 5.4 is

Lemma 5.5. For any γ ∈ ( 1
3 + 2λ̄

3 , 2
3 + λ̄

3 ), g ∈ C J(Xs
m0

( δ0
2 ),Γs

γ ).

Proof. We shall only prove this for the case for J = 1; the higher order
smoothness follows similarly. Fix γ0 ∈ ( 1

3 + 2λ̄
3 , γ). Note, from Lemma 5.4,

[
I − DzF

s(xs, g(xs))
]−1 =

∞∑
k=0

DzF
s(xs, g(xs))k

∈ C0

(
Xs

m0

(
δ0

2

)
, L
(
Γs

γ0
,Γs

γ1

)) ∩ L∞
(

Xs
m0

(
δ0

2

)
, L
(
Γs

γ0

))
,
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for any γ1 ∈ (γ0,
2
3 + λ̄

3 ). Therefore,

Z(xs) ≡ [
I − DzF

s(xs, g(xs))
]−1

DxsF s

∈ C0

(
Xs

m0

(
δ0

2

)
, L
(
Xs

m0
,Γs

γ1

)) ∩ L∞
(

Xs
m0

(
δ0

2

)
, L
(
Xs

m0
,Γs

γ0

))
.

For any xs, x̃s ∈ Xs
m0

( δ0
2 ),

g(x̃s) − g(xs) = F s(x̃s, g(x̃s)) − F s(xs, g(xs))

= DxsF s(x̃s − xs) + DzF
s(xs, g(xs))(g(x̃s) − g(xs))

+ F s(xs, g(x̃s)) − F s(xs, g(xs))

− DzF
s(xs, g(xs))(g(x̃s) − g(xs)).

Note that Lemma 5.4 implies that g is Lipschitz, but we also obtain, for any
γ1 > γ0,

‖g(x̃s) − g(xs) − Z(xs)(x̃s − xs)‖γ1

|x̃s − xs| → 0 as x̃s → xs,

which means that Z(xs) is the derivative of g(xs). ��
Recall the above construction is based on the orbit {yn} starting at y0 =

h0(m0, xs
0). For any xs ∈ Xs

m0
( δ0

2 ), let

g̃y0
(xs) = xc

0,

where xc
0 is the 0-th center component of g(xs). From Lemma 5.5, g̃y0

∈
C J(Xs

m0
( δ0

2 ), Xc
m0

). In fact, it is clear that g̃y0
(0) = 0 and, from Lemma 5.3

and (5.14),

Dxs g̃y0
≤ 24(σ + Cδ0 + 3BB1µ + 3BA(2δ0))

a(1 − λ)
≡ µ̄.(5.20)

Let

Wss
y0

≡
{
ψ(m0) + xs

0 + xs + g̃y0
(xs) + f0

(
g̃y0

(xs), xs
) : xs ∈ Xs

m0

(
δ0

2

)}
.

Wss
y0

is called the stable fiber passing through y0 and it is a C J submanifold.
The point y0 is said to be a representative or a base point of the fiber.
Furthermore, we have

Lemma 5.6. (1) Let y1 = h0(m1, xs
1) be defined as in (5.1) for y0, then we

have T(Wss
y0

) ⊂ Wss
y1

.

(2) For y, ỹ ∈ W̃cs, “ỹ ∈ Wss
y ” is an equivalence relation.
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The idea of the proof is that ỹ ∈ Wss
y implies the orbits of y and ỹ

exponentially converge to each other at a certain rate. We omit the details
of the proof. It follows from the lemma that W̃cs can be foliated into this
invariant family of stable fibers.

Next, we prove that the fibers are locally Hölder with respect to the
base points. For any base point y0 ∈ W̃cs, we still use the above notations,
yn = h0(mn, xs

n), fn, Sn, etc. For any (x̄c, x̄s) ∈ Xc
mn

(ρδ) ⊕ Xs
mn

(ρδ),
let

gn(x̄
c, x̄s, · ) : Xs

mn
→ Xc

mn

be the local representation of the stable fiber through ȳn = ψ(mn) + xs
n +

x̄c + x̄s + fn(x̄c, x̄s), i.e., gn(x̄c, x̄s, 0) = x̄c and

ψ(mn) + xs
n + gn(x̄

c, x̄s, xs) + x̄s + xs + fn(gn(x̄
c, x̄s, xs), x̄s + xs) ∈ Wss

ȳ .

From (5.20), the domain of gn(x̄c, x̄s, · ) is a subset of Xs
mn

(ρδ) containing
at least a neighborhood of 0 in Xs

mn
.

Lemma 5.7. (1) There exist β > 0 and C0 > 0 depending only on B, B1,
λ, a, and y0, and ω0 > 0 independent of y0 such that

∣∣g0(x̄
c, x̄s, xs) − g0(0, 0, xs)

∣∣ ≤ C0(|x̄c| + |x̄s|)β

whenever |x̄c| + |x̄s| ≤ ω0 and |xs| < δ
4 .

(2) Dxs g0(x̄c, x̄s, 0) is continuous in x̄c and x̄s.

This lemma means that stable fibers are locally Hölder continuous in the
base point and the tangent spaces of the fibers vary continuously.

Proof. From (5.20), when ω0 is small enough, the domain of gn(x̄c, x̄s, · )
contains Xs

m0
( δ

4). Since Wcs and the family of stable fibers are invariant
under the map T , we may define x̄c

n ∈ Xc
mn

, x̄s
n, x̃s

n ∈ Xs
mn

inductively so
that

Sn
(
x̄c

n, x̄s
n

) = x̄c
n+1 + x̄s

n+1,

Sn
(
gn
(
x̄c

n, x̄s
n, x̃s

n

)
, x̄s

n + x̃s
n

) = gn+1
(
x̄c

n+1, x̄s
n+1, x̃s

n+1

)+ x̄s
n+1 + x̃s

n+1

x̂c
n = gn

(
x̄c

n, x̄s
n, x̃s

n

)− gn
(
0, 0, x̃s

n

)
,

where x̃s
0 = xs, x̄α

0 = x̄α. These quantities are well defined as long as
x̄s

k, x̄s
k + x̃s

k ∈ Xs
mk

(ρδ) and x̄c
k, gk(x̄c

k, x̄s
k, x̃s

k) ∈ Xc
mk

(ρδ) for k = 1, 2, . . . , n.
It may happen that they leave the coordinate charts Xc

mn
(ρδ)⊕ Xs

mn
(ρδ) and

stop being well defined for large n. From Lemma 5.1, we have
∣∣x̄c

n

∣∣+ ∣∣x̄s
n

∣∣ ≤ 2BB1
(∣∣x̄c

n−1

∣∣+ ∣∣x̄s
n−1

∣∣) ≤ (2BB1)
n(|x̄c| + |x̄s|).
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On the other hand, from Lemma 5.1 and (5.20),
∣∣x̃s

n+1

∣∣ = ∣∣Ss
n

(
gn
(
x̄c

n, x̄s
n, x̃s

n

)
, x̄s

n + x̃s
n

)− Ss
n

(
x̄c

n, x̄s
n

)∣∣
= ∣∣As

n x̃s
n + Rs

n

(
gn
(
x̄c

n, x̄s
n, x̃s

n

)
, x̄s

n + x̃s
n

)− Rs
n

(
x̄c

n, x̄s
n

)∣∣
≤ ∥∥As

n

∥∥∣∣x̃s
n

∣∣+ ∥∥DRs
n

∥∥(∣∣x̃s
n

∣∣+ ∣∣gn
(
x̄c

n, x̄s
n, x̃s

n

)− x̄c
n

∣∣)

≤
n∏

k=0

(∥∥As
k

∥∥+ 2
∥∥DRs

n

∥∥)|xs|.

Therefore,

∣∣gn
(
x̄c

n, x̄s
n, x̃s

n

)∣∣ ≤ (2BB1)
n(|x̄c| + |x̄s|) + µ̄

n−1∏
k=0

(∥∥As
k

∥∥+ 2
∥∥DRs

n

∥∥)|xs|.
(5.21)

Let x̂s
n+1 satisfy

gn+1
(
0, 0, x̂s

n+1

)+ x̂s
n+1 = Sn

(
gn
(
0, 0, x̃s

n

)
, x̃s

n

)
.

Then we have
∣∣x̂s

n+1 − x̃s
n+1

∣∣ ≤ ∣∣x̄s
n+1

∣∣+ ∣∣Ss
n

(
gn
(
x̄c

n, x̄s
n, x̃s

n

)
, x̄s

n + x̃s
n

)
− Ss

n

(
gn
(
0, 0, x̃s

n

)
, x̃s

n

)∣∣
≤ 2(2BB1)

n+1(|x̄c| + |x̄s|) + ∥∥DRs
n

∥∥∣∣x̂c
n

∣∣.
Therefore,

∣∣x̂c
n+1

∣∣ ≥ ∣∣Sc
n

(
gn
(
x̄c

n, x̄s
n, x̃s

n

)
, x̄s

n + x̃s
n

)− Sc
n

(
gn
(
0, 0, x̃s

n

)
, x̃s

n

)∣∣
− µ̄

∣∣x̂s
n+1 − x̃s

n+1

∣∣
≥ [∥∥(Ac

n

)−1∥∥−1 − 2
∥∥DRs

n

∥∥]∣∣x̂c
n

∣∣− 3(2BB1)
n+1(|x̄c| + |x̄s|),

which implies

∣∣x̂c
n

∣∣ ≥
n−1∏
k=0

[∥∥(Ac
k

)−1∥∥−1 − 2
∥∥DRs

n

∥∥]∣∣x̂c
0

∣∣− 3nµ̄(2BB1)
n(|x̄c| + |x̄s|).

From the definition of x̂c
n and using (5.21) and the estimate on x̃s

n , we obtain

∣∣x̂c
0

∣∣ ≤
(

10BB1

a

)n

(|x̄c| + |x̄s|) + 2

(
1 + λ̄

2

)n

|xs|.(5.22)
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Let

β =
log 2

1+λ̄

log 2
1+λ̄

+ log 10BB1
a

n0 = (β − 1) log(|x̄c| + |x̄s|)
log 10BB1

a

ω0 =
(

aδ

200BB1

) 1
β

and take n1 be the integer in [n0, n0 + 1), then one can verify that x̄α
n , x̃s

n,
and x̂c

n are well defined for all n ≤ n1. Substituting n1 into (5.22), we
immediately obtain

∣∣g0(x̄
c, x̄s, xs) − g0(0, 0, xs)

∣∣ = ∣∣x̂c
0

∣∣ ≤ 20BB1

a
(|x̄c| + |x̄s|)β,

which gives the Hölder continuity of the fibers in the base point.
In order to prove conclusion (2), we only need to consider the continuity

of Dxs g0(x̄c, x̄s, 0) at (x̄c, x̄s) = (0, 0). For k > n ≥ 0, let

Lα
n,k = D(Sk−1 ◦ · · · ◦ Sn)

α
(
x̄c

n, x̄s
n

)
, Lα,0

n,k = D(Sk−1 ◦ · · · ◦ Sn)
α(0, 0)

and

Gn = Dxs gn
(
x̄c

n, x̄s
n, 0

)
, G(0)

n = Dxs gn(0, 0, 0),

for α = c, s, where x̄α
n is defined as in the first part of the proof. From the

invariance of the family of fibers, one can calculate that
(
Lc

n,k − Gk Ls
n,k

)
Gn = (

Gk Ls
n,k − Lc

n,k

)∣∣
Xs

m0
.(5.23)

The same equation also holds if x̄α
n and x̄α

k are replaced by 0. Though these
operators may not be defined for all n and k, the smaller |x̄c

n| + |x̄s
n| is,

the larger n and k can be taken so that G and L are well defined. Since
‖Gn‖ ≤ µ̄ by (5.20), identity (5.23) implies

(
Lc,0

0,k − G(0)
k Ls,0

0,k

)(
G0 − G(0)

0

) = (
Gk − G(0)

k

)
Ls,0

0,k(idXs
m0

+ G0) + o(1),

where o(1) term converges to 0 as |x̄c
0| + |x̄s

0| → 0 for any fixed k > 0.
Therefore, from Lemma 5.1 and (5.20), we obtain

∥∥G0 − G(0)
0

∥∥ ≤ 3µ̄

(
1 + λ̄

2

)k

+ o(1).

For any ω > 0, fix k so large that the first term is less than ω
2 . Then, when

|x̄c
0| + |x̄s

0| is sufficiently small, the left side is bounded by ω. This estimate
proves the continuity of Dxs g0(x̄c, x̄s, 0) in x̄c and x̄s. ��
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6. Extensions

In the previous sections, we studied approximate inflowing manifolds for
a C J map T defined on a Banach space. We now extend these results in
several directions.

6.1. Semiflows. Let T ∈ C0([0,+∞) × X, X) be a C J semiflow on X for
some J ≥ 1, i.e.,

T t ∈ C J(X, X), T 0 = I, T t+s = T t ◦ T s, for all t, s ≥ 0.

Suppose there exist t0 > 0, a Banach manifold M, and an immersion
ψ : M → X such that conditions (H1)–(H4) are satisfied for ψ(M) and T t0.
In that case we say that ψ(M) is an approximate inflowing manifold for
the semiflow T . Under the conditions of Theorem 2.2, there exists a C J

immersed inflowing invariant submanifold Wcs for the map T t0, which is
also the unique center stable manifold of the map T nt0 for any integer n ≥ 0.
In order to prove that Wcs is positively invariant under the semiflow T t , we
further assume

(H5) There exists an integer k ≥ 0, such that for any ξ > 0, there exists
ζ > 0, such that for any x ∈ B(ψ(M), r) and t ∈ [kt0, kt0 + ζ], we
have

|T t(x) − T kt0 x| < ξ.

With this weak uniform continuity condition in time, from Lemma 4.4 and
Proposition 4.10 we obtain the local positive invariance of Wcs under the
semiflow.

Theorem 6.1. Assume (H5) holds. For any x ∈ Wcs we have

• T nt0(x) ∈ Wcs for any integer n ≥ 0 and
• T t(x) ∈ Wcs for all t ∈ [0, t1] if T t(x) ∈ U for all t ∈ [0, t1], where U

is the neighborhood defined in Proposition 4.10.

The next issue is, under hypothesis (H3’), the invariance of the family
of stable fibers under the semiflow. For any two points x, x̃ ∈ W̃cs, from
the construction of the stable fibers, it is clear that x̃ ∈ Wss

x if and only if
|T nt0(x) − T nt0(x̃)| satisfies the decay condition required in the definition
of the set Γs

γ , defined based on {T nt0(x)}, for some γ ∈ ( 1
3 + 2λ̄

3 , 2
3 + λ̄

3 ).
On the other hand, if this decay condition holds for an orbit for some γ in
that interval, then it holds for all γ in that range. Using these properties, one
can prove that, for any x̃, x ∈ W̃cs, if x̃ ∈ Wss

x , then T t(x̃) ∈ Wss
T t (x) for all

t = nt0 with integer n ≥ 0 and t ∈ [0, t1] where t1 satisfying that T t(x) ∈ U
for all t ∈ [0, t1].
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6.2. Overflowing manifolds. In this subsection, we shall consider nor-
mally hyperbolic approximately overflowing invariant manifolds. The re-
sults are basically parallel to the case of approximate inflowing invariant
manifolds.

Definition 6.2. An immersed manifold ψ(M) ⊂ X is said to be approxi-
mately overflowing invariant if the following hold

1. There exist an open subset M1 ⊂ M, a homeomorphism v : M → M1,
and η > 0 such that, for all m ∈ M

|T(ψ(v(m))) − ψ(m)| < η;
2. There exists r0 ∈ (0, 1) such that ψ(Bc(m0, r0)) is closed in X for any

m0 ∈ u(M).

Condition (1) means that the image of ψ(M1) under T almost covers ψ(M)
and v is approximately T −1 on ψ(M). In particular, (2) means ψ(M1) is
“strictly smaller” than ψ(M). Note here that v is assumed to be invertible.

In addition to (H1) and (H2), instead of (H3), we assume the following
normal hyperbolicity condition

(C3) There exists a ∈ (0, 1), λ ∈ (0, 1) and positive integer J such that,
for any m1 ∈ M, m0 = v(m1), α ∈ {c, u}, β ∈ {c, s, u}, α �= β,

∥∥Πβ
m1

DT(ψ(m0))
∣∣

Xα
m0

∥∥ ≤ σ,
∥∥(Πc

m1
DT(ψ(m0))

∣∣
Xc

m0

)−1∥∥−1
> a,

λ
∥∥(Πu

m1
DT(ψ(m0))

∣∣
Xu

m0

)−1∥∥−1
> 1,

∥∥Πs
m1

DT(ψ(m0))
∣∣

Xs
m0

∥∥ < λ min
{
1,
∥∥(Πc

m1
DT(ψ(m0))

∣∣
Xc

m0

)−1∥∥−J}
.

Note (C3) implicitly assumes that, for any m1 ∈ M, m0 = v(m1),

Πα
m1

DT(ψ(m0)) : Xα
m0

→ Xα
m1

is an isomorphism for α = c, u.

Theorem 6.3. Assume that (H1), (H2), (C3), and (H4) hold. Depending
on r0, B, B1, λ, L, when η, χ, σ , and inf A(δ) are sufficiently small, there
exists a C J negatively invariant manifold Wcs, which is given as the image
of a map

h : {(m, xu) : m ∈ M, xu ∈ Xu
m(δ0)

} → X.

Moreover h satisfies

h(m, xu) − (ψ(m) + xu) ∈ Xs
m(δ0).
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When we say that Wcu is negatively invariant we mean that it satisfies
Definition 6.2 for η = 0. Wcu is called the center unstable manifold associ-
ated with ψ(M). In this way, T : Wcu → T(Wcu) is a homeomorphism and
T −1 can be uniquely defined on Wcu . A precise statement on the smallness
of the parameters η, χ, σ , and inf A(δ) can be found in Theorem 4.2.

Remark 6.4. When (H2′) holds for M, then Wcu is an embedded submani-
fold which also satisfies (H2′).

In order to construct unstable fibers in the center unstable manifold,
which extend in the unstable diretion, we will further need

(C3’) For any m1 ∈ M, writing m0 = v(m1),

λ
∥∥(Πu

m1
DT(ψ(m0))

∣∣
Xu

m0

)−1∥∥−1
>
∥∥Πc

m1
DT(ψ(m0))

∣∣
Xc

m0

∥∥.
Let W̃cu be an open subset of Wcu away from its boundary:

W̃cu =
{

h(m, xu) : ψ(Bc(m, δ0)) is closed in X, xu ∈ Xu
m

(
δ0

5

)}
,

where h is the map in Theorem 6.3 representing Wcu .

Theorem 6.5. Assume that (H1), (H2), (C3), (H4), and (C3’) hold. De-
pending on r0, B, B1, λ, L, when η, χ, σ , and inf A(δ) are sufficiently
small, for any y ∈ W̃cu, there exists a unique C J submanifold containing y,
Wuu

y ⊂ Wcu, such that

(1) T : T −1(Wuu
T(y)) ∩ Wuu

y → Wuu
T(y) is a diffeomorphism;

(2) For y, ỹ ∈ W̃cu, “ỹ ∈ Wuu
y ” is an equivalence relation;

(3) for any ỹ ∈ Wuu
y , |T (−n)(ỹ) − T (−n)(y)| → 0 exponentially, as n →

+∞;
(4) Wuu

y is Hölder continuous in y and TyWuu
y is continuous in y.

Remark 6.6. Finally, if an approximately normally hyperbolic invariant
manifold M is both inflowing and overflowing, then the intersection of
its center stable and center unstable manifolds gives a true C J normally
hyperbolic invariant manifold M̃ close to M. Moreover, if the dynamics is
defined by a semiflow, then Theorem 6.1 implies M̃ is invariant.

In fact, if an approximately normally hyperbolic invariant manifold is
both inflowing and overflowing, in the spirit of Lemma 3.7, it has be a closed
manifold without boundary.

6.3. Smoothness in external parameters. In practical applications of in-
variant manifold theory, it is often the case that the map T depends on
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an external parameter. It is important to determine the smoothness of the
invariant objects with respect to this parameter.

Let X and Y be Banach spaces and T : X × Y → X. Suppose that
T ∈ C J(X × Y, X) and that ψ(M) is an approximately inflowing invariant
manifold for T(·, 0). Assume conditions (H1)–(H3) hold for T( · , 0) and
(H4) for T in both x and y in a neighborhood of ψ(M) × {0} in X × Y .
Under these assumptions, ψ(M) is actually an approximately inflowing
invariant manifold for T( · , y) for all small y ∈ Y . Therefore, there exists
a positively invariant center stable manifold given by a map h( · , y) for each
small y. One would like to know how smoothly does h depend on y.

If T and DxT are only continuous in y ∈ Y , we refer to Theorem A and
Theorem 6.2 in [BLZ2]. Basically, the result is, under certain conditions,
if T is continuous from Y to C J(X, X), then h(y, · ) and its derivatives up
to the J-th derivatives are uniformly continuous in y.

The idea to prove the smoothness of h in y is to extend the phase space
of the dynamical system to X × Y .

We need a technical assumption: The norm | · | on the Banach space Y
is a C J function away from 0.

Let φ : R→ [0, 1] be a C∞ cut-off function,

φ(s) = 1, for s ∈ [−ξ, ξ], φ′(s) < 0, for s > ξ,

for some ξ > 0. Extend T as

T̃ (x, y) = (T(x, y), φ(|y|)y).

It is easy to see that, when ξ is sufficiently small, ψ(M) × BY(0, 2ξ) is
an approximately normally hyperbolic inflowing invariant manifold for T̃ .
Therefore, there exists a C J map h̃(m, xs, y) such that its image is the
positively invariant center stable manifold near ψ(M) × BY(0, 2ξ). On the
other hand, for any fixed y ∈ BY(0, ξ), the image of h̃( · , y) obviously is
the center stable manifold for T( · , y). Therefore, the center stable manifold
is C J in y. In addition, the stable fibers are Hölder continuous in y. Under
additional spectral gap conditions, with some more effort which is not
included in this paper, it is sometimes possible to prove that the stable fibers
are C J−1 with respect to the base points (see for example, [CL]). The case
of an approximately overflowing invariant manifold is similar.

This discussion is actually relevant to the fundamental issue of the
smoothness of stable or unstable manifolds with respect to parameters even
for a finite-dimensional ODE,

ẋ = f(x, y), x ∈ Rn, f ∈ C J , f(0, y) = 0

near the fixed point x = 0. From the above argument, we obtain that the
center stable and center unstable manifolds of x = 0 are Ck in y. Thus,
if x = 0 is hyperbolic, its stable and unstable manifolds are also Ck in y.
However, if x = 0 has center directions for y = 0, we could not obtain
the Ck smoothness of its stable and unstable manifolds, as they can only
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be treated as stable and unstable fibers in the augmented system with y
included. From the following example, one sees that this actually is not just
a technical problem of our approach. Consider

ẋ1 = x1, ẋ2 = g(x1, y)(6.1)

where g ∈ C1 and g(0, y) = 0. The unstable manifold of this system is
explicitly given by

x2 =
∫ 1

0

1

s
g(x1s, y)ds

whose right side may not be C1 in y if g is only C1.

6.4. Persistence of C1 normally hyperbolic invariant manifolds. Finally,
we consider persistence of an invariant manifold for a dynamical system
under small perturbations and relax the C2 requirement for the result
in [BLZ1].

Let X be a Banach space and let T ∈ C J(X, X). Suppose M ⊂ X is
a C J embedded invariant submanifold under T , i.e., M = T(M). One of
the important questions is: When T is slightly perturbed to T̃ in the C J top-
ology, does an invariant manifold M̃ of T̃ exists near M? It has been shown
(see [F1], [F2], [F3], [HPS], [KB], [Ku]) that in finite dimensions, a nearby
invariant manifold M̃ of T̃ exists if M is a closed submanifold without
boundary and it is normally hyperbolic. The problem in infinite dimen-
sions has been studied in [He], etc. For the general problem of persistence
of invariant manifolds, the dynamics near the boundary is subtle. Over-
flowing and inflowing are two robust situations for backward and forward
semidynamics, respectively. In order to obtain a manifold invariant for
both forward and backward directions, the unperturbed manifold should be
both inflowing and overflowing, and thus without boundary. It is proved
in [BLZ1] that if

(A1) X is a Banach space and T ∈ C1(X, X), M ⊂ X is a connected
compact C2 submanifold and T(M) = M;

(A2) For any m ∈ M, there exist projections Πc
m , Πs

m , and Πu
m , C1 in m,

such that, for α = c, u, s,

Πc
m + Πu

m + Πs
m = I, Xc

m = Tm M, DT(m)
(
Xα

m

) ⊂ Xα
T(m)

where Xα
m = Πα

m X. Furthermore, for α = c, u, DT(m) : Xα
m → Xα

m
is an isomorphism;

(A3) There exists λ ∈ (0, 1) such that, for any m ∈ M,

λ
∥∥(Πu

T(m)DT(m)
∣∣

Xu
m

)−1∥∥−1
> max

{
1,
∥∥Πc

T(m) DT(m)
∣∣

Xc
m

∥∥},∥∥Πs
T(m)DT(m)

∣∣
Xs

m

∥∥ < λ min
{
1,
∥∥(Πc

T(m)DT(m)
∣∣

Xc
m

)−1∥∥−1};
then a compact C1 submanifold M̃ exists for any small C1 perturbation T̃
to T . Furthermore,
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• M̃ is C1 close to M;
• There exist projections Π̃c

m , Π̃u
m , and Π̃s

m for any m ∈ M̃, satisfying the
above properties except they are C0 in m;

• Center stable and center unstable manifolds of M̃ are constructed. In-
variant foliations in these two manifolds are constructed in [BLZ3].

One sees that the persistent manifold M̃ is also normally hyperbolic, but
does not satisfy all the conditions on M. Naturally, it is not ideal that only
a C1 invariant manifold M̃ persists near the C2 manifold M. The reason
that M was assumed to be C2 was that we needed Πα

m to be C1 or Lipschitz,
while the smoothness of Xc

m = Πc
m X = Tn M is one order lower than M.

We shall use the results proved in this paper to obtain

Theorem 6.7. Suppose that M is a connected C1 compact submanifold in X
which satisfies the above conditions (A1)–(A3), except the projections Πα

m
are only assumed to be C0 in m. Then a compact C1 submanifold persists
for any sufficiently small C1 perturbation T̃ to T and M̃ satisfies exactly the
same properties as M.

Remark 6.8. If T is C J , J ≥ 1, then M̃ is also C J if conditions (H3)
and (C3) hold. See Theorems 6.1 and 7.3 in [BLZ2].

It is clear that M is approximately invariant under T̃ , both inflowing and
overflowing since M does not have boundary. Furthermore, the compactness
of M implies that (H4) is satisfied and

0 < a <
∥∥(Πc

m1
DT(ψ(m0))

∣∣
Xc

m0

)−1∥∥−1

holds for some a > 0 as needed in (H3), (H3’), and (C3). In order to apply
Theorems 2.2 and 6.3, the major difficulty is that Πα

m is not Lipschitz in m
as required in (H2). Note that M is finite dimensional since it is compact.
Our idea is to approximate Πα

m by projections Lipschitz in m. We need

Theorem 6.9. Let M be an n-dimensional Cr manifold with countable
topological basis and let N be a Cr Banach manifold with a metric d which
induces an equivalent topology on N. Then for any f ∈ C0(M, N), there
exists f̃ ∈ Cr(M × (0, 1], N) such that

• d( f̃ε, f̃ε0) → 0 uniformly on M as ε → ε0 ∈ (0, 1].
• d( f̃ε, f ) ≤ ε on M.
• f̃ε → f̃ε0 locally in Cr as ε → ε0 ∈ (0, 1].

We will give the proof of the theorem later and first provide the proof of
Theorem 6.7. Let

N = {(Pc, Pu, Ps) ∈ L(X)3 : Pc + Pu + Ps = I, (Pα)2 = Pα,

Pα Pβ = 0, α, β = c, u, s, α �= β},
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i.e., N is the collection of all projection triples corresponding to trichotomies
of X into closed subspaces. One can verify that N is a Banach manifold.
Therefore, we have a C0 map from M into N given by

Π(m) = (
Πc

m,Πu
m,Πs

m

)
.

Note that, considering M as an approximately normally hyperbolic invariant
manifold for any T̃ so that ‖T̃ − T‖C1(B(M,r)) is sufficiently small for some
r > 0, the constant σ0 and A0 in Theorems 2.2 and 6.3 are determined only
by

B′ = 2‖Π‖C0, B′
1 = 2‖DT‖C0(B(M,r)), λ′ = 1 + λ

2
, a′ = 1

2
a.

Applying Theorem 6.9, there exists a Π̃ ∈ C1(M, N) such that (H2), (H3),
(H3’), (C3) and (C3’) are satisfied for the following constants when Π̃ and T
are substituted in,

B′′ = B′, σ ′′ = 1

3
σ0, λ′′ = 1

3
+ 2λ

3
, a′′ = 4

3
a′, L = ‖Π̃‖C1 .

Therefore, when ‖T̃ − T‖C1(B(M,r)) is sufficiently small and T̃ and Π̃ are
used, then Definition 2.1, Definition 6.2, and hypotheses (H1)–(H4), (H3’),
(C3) and (C3’) are satisfied with λ′, B′, B′

1, L , a′ and

η = ‖T̃ − T‖C0(M), σ = σ0

2
.

Let AT̃ (δ) be defined for T̃ as in (2.5) then AT (δ) → 0 as δ → 0 since M
is compact. Moreover,

|AT̃ (δ) − AT (δ)| ≤ 2‖T̃ − T‖C1(B(M,r)).

Therefore, when ‖T̃ − T‖C1(B(M,r)) is sufficiently small, Theorems 2.2
and 6.3 imply that, for T̃ , there exist C1 center stable manifold Wcs and
center unstable manifold Wcu , whose common “width” δ0 is uniform in T̃ . It
is clear that M̃ = Wcs ∩Wcu is a C1 invariant manifold diffeomorphic to M.
The corresponding invariant subspaces are given by the tangent spaces of
the stable and unstable fibers, which are C0 in the base point m̃ ∈ M̃.

Finally, we prove Theorem 6.9. The notation used below is completely
independent of other parts of the paper.

Proof. The idea is fairly straightforward, even if the details are cumber-
some: Use mollifiers and a partition of unity on subsets that form a locally
finite cover. First, we construct a countable collection of coordinate charts
covering M. Let Λ = {Wi : i = 1, 2, . . . } be a topological base of M.
For any m ∈ M, since M is n-dimensional and thus locally compact, there
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exists a neighborhood W of m such that W is compact, and an element
Wm ∈ Λ such that m ∈ Wm ⊂ W . Therefore, Wm is compact. It is clear
that Λ1 = {Wm : m ∈ M} ⊂ Λ is a countable collection. We may label the
elements of Λ1 as W (1)

i , i = 1, 2, . . . . Obviously M = ⋃
i W (1)

i .
Next, we inductively define a class of open sets {Ki : i = 1, 2, . . . } such

that
i⋃

j=1

W (1)
j ⊂ Ki, Ki ⊂ Ki+1, and Ki is compact

for i = 1, 2, . . . . Let K1 = W (1)
1 . Suppose that we have defined K1, . . . , Ki

such that the above conditions hold. Let K = Ki ∪ W (1)

i+1, then K \ K is
compact and can be covered by the union of some finitely many elements
W (1)

j1
, . . . , W (1)

jl
in Λ1. Let

Ki+1 = Ki ∪ W (1)
i+1

l⋃
k=1

W (1)
jk

.

It is clear that this construction gives sets satisfying our requirements. Let
K0 = K−1 = ∅.

For each i > 0, find finitely many coordinate charts (Ui, j , φi, j ), j =
1, 2, . . . , li , where φi, j : Ui, j → Bn(0, 3) ⊂ Rn, such that Ui, j ⊂ Ki+1 \
Ki−2, f(Ui, j) is within a coordinate neighborhood in N for each j, and
Ki \ Ki−1 ⊂ ⋃li

j=1 φ−1
i, j (Bn(0, 1)). Let {(Ui, φi) | φi : Ui → Bn(0, 3),

i = 1, 2, . . . } be the collection of all the above coordinate charts. Let Y
be the model Banach space of N and, for each i, let ψi : Oi → BY(0, 1)

be a coordinate chart in N such that f(Ui) ⊂ Oi and ψi( f(φ−1
i (0))) = 0.

Let Vi = φ−1
i (Bn(0, 1)). From the above construction, it is clear that⋃

i Vi = M, Vi is precompact, and { j : Uj ∩ Ui �= φ} is finite for any
i > 0.

With the above preliminaries, we start to construct a sequence of ap-
proximations

{
fε,k ∈ C0(M, N) : ε ∈ [0, 1], k = 1, 2, . . .

}
such that

• For each k > 0 and ε ∈ [0, 1], fε,k is Cr on
⋃k

i=1 Vi and fε,k+1 = fε,k
except on Uk+1, and fε,k(Ui) ⊂ Oi for all ε, k, i.

• d( fε,k, fε0,k) → 0 as ε → ε0 for ε0 ∈ [0, 1];
• d( fε,k, fε,k+1) ≤ 2−(k+1)ε and f0,k = f , fε,0 = f .

Let σ ∈ C∞
0 (Bn(0, 1

2 ), [0,+∞)) satisfy
∫
Rn σ = 1 and define σδ(x) =

δ−nσ( x
δ
). Let γ ∈ C∞

0 (Bn(0, 3
2), [0, 1]) satisfy γ |Bn(0,1) = 1. Let fε,0 = f

and assume fε,0, . . . , fε,k have been defined. For any m ∈ φ−1
k+1(Bn(0, 2)),
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let x = φk+1(m) and, for (ε, δ) ∈ [0, 1] × (0, 1], define,

gε,δ(m) = ψ−1
k+1

{
ψk+1( fε,k(m))

+ γ(x)
[ ∫

Bn(0,1)

σδ(y)ψk+1
(

fε,k
(
φ−1

k+1(x + y)
))

dy

− ψk+1( fε,k(m))
]}

.

Let gε,δ(m) = fε,k(m) for m /∈ φ−1
k+1(Bn(0, 2)) and gε,0 = fε,k.

Clearly, gε,δ ∈ C0(M, N) and is Cr on Vk+1. We will first prove, for
fixed (ε0, δ0) ∈ [0, 1] × [0, 1], d(gε,δ, gε0,δ0) → 0 as (ε, δ) → (ε0, δ0).
On Bn(0, 2), let

ḡε,δ = ψk+1 ◦ gε,δ ◦ φ−1
k+1, f̄ε = ψk+1 ◦ fε,k ◦ φ−1

k+1,

S1 = {
z = f̄ε(x) : x ∈ Bn

(
0, 3

2

)
, ε ∈ [0, 1]}.

By the induction assumption (2), S1 is compact. Therefore,

S = conv(S1) ⊂ BY(0, 1) ⊂ Y

is also compact. This implies that, for any η > 0, there exists ξ > 0 such
that ‖z2 − z1‖Y < η whenever z2, z1 ∈ S, d(ψ−1

k+1(z2), ψ
−1
k+1(z1)) < ξ .

By the definition, ḡε,δ → ḡε0,δ0
also uniformly on Bn(0, 3

2), which implies

that, restricted on φ−1
k+1(Bn(0, 3

2 )), d(gε,δ, gε0,δ0) → 0 as (ε, δ) → (ε0, δ0).
Since gε,δ = fε,k except on φ−1

k+1(Bn(0, 3
2)), therefore, d(gε,δ, gε0,δ0) → 0 as

(ε, δ) → (ε0, δ0).
Let

Di =
⋃

ε∈[0,1]
fε,k
(
φ−1

k+1

(
Bn
(
0, 3

2

)) ∩ Ui
)
,

for i = 1, 2, . . . . From the induction assumption, Di is compact and
d(Di, Oc

i ) > 0. The construction of Ui implies that there are only finitely
many nonempty Di . Therefore, there exists η > 0 such that d(Di, Oc

i ) > η
for all i. Let

h(ε, δ) = d(gε,δ, fε,k)

ε

for (ε, δ) ∈ (0, 1] × [0, 1]. Obviously, h is continuous and h(ε, 0) = 0. By
the continuity of h, there exists a smooth function δ(ε) > 0, for ε ∈ (0, 1]
such that

h(ε, δ(ε)) < min

{
2−(k+1),

η

ε

}
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and δ(ε) → 0+ as ε → 0+. In fact, δ(ε) can be set to be a constant on
[ε0, 1] for any ε0 ∈ (0, 1]. Let fε,k+1 = gε,δ(ε). One can verify the induction
assumptions easily.

Let f̃ε = limk→∞ fε,k. Because, for any i > 0, there are only finitely
many j’s satisfying Ui ∩ Uj �= ∅, f̃ε is Cr . Clearly, all the conditions on f̃ε
hold. ��

7. Dynamical spike solutions for a singular parabolic equation

We seek a manifold of evolving spike solutions of the semilinear parabolic
equation

{
ut = ε2∆u − u + f(u), x ∈ Ω ⊂⊂ Rn

∂u
∂N = 0, x ∈ ∂Ω.

(7.1)

Here 0 < ε � 1, Ω is a smooth bounded domain inRn , and N is the outward
unit normal vector field of ∂Ω. The nonlinearity f is smooth and assumed
to satisfy conditions (F1)–(F3) below, which guarantee certain properties of
the ground states of the corresponding rescaled elliptic problem on Rn.

In this section, the abstract theorems established in the previous sections
will be applied to the nonlinear parabolic equation (7.1). We will prove that,
under certain conditions on f , there exists a normally hyperbolic invariant
manifold in the phase space W2,q(Ω) of (7.1), which is diffeomorphic to ∂Ω.
Moreover, this invariant manifold consists entirely of single-boundary-peak
states. By a single-boundary-peak state, we mean a function u : Ω̄ → R

which achieves its maximum at some p ∈ ∂Ω and decays like O(e− C|x−p|
ε ).

Moreover, the speed of the peak as it moves along ∂Ω is of order O(ε3). The
analysis could be extended to any fixed number of peaks moving on ∂Ω,
so long as the peaks remain separated by a distance of order O(εγ ) with
γ < 1, but that, being merely a technical exercise, will not be pursued
here.

Background on stationary peak solutions. The stationary problem for
(7.1) has been studied by many authors, especially for the case where f(u) =
u p with superlinear but subcritical growth. In [NT1], the Gierer–Meinhardt
system was investigated in the asymptotic limit as the diffusivity of the
inhibitor becomes unbounded. In that limit, one is lead to (7.1), referred
to as the ‘shadow equation’. It was observed that no positive stationary
solutions exist when ε is large. In [LNT] the system and the single equation
were again studied. For (7.1) it was shown that positive solutions must
have peaks with exponentially decaying tails as ε ↓ 0. The paper [NT2]
studies (7.1) with f(u) = u p. Using a mountain pass argument, the authors
obtain a positive solution that has a single peak, the so-called least energy
solution. They show that this peak must actually lie on ∂Ω and the profile
of the solution is a modification of the ground state on Rn, translated and
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rescaled by ε. Z-Q. Wang, in [WZ1], gave a topological lower bound on
the number of such solutions. In further work W.-M. Ni and I. Takagi,
in [NT3], proved that the peak location tended, as ε → 0, to the point of ∂Ω
where the mean curvature achieved is maximum. The analysis involved
an asymptotic expansion of the energy, in terms of ε, about that modified
ground state discussed above. The modification to which we refer, involved
smoothly mapping a neighborhood of the half plane, centered at the peak of
the ground state, to a neighborhood of a point of ∂Ω lying within Ω̄, and it
is this mapping that introduces the mean curvature when one computes the
expansion of the energy. Other papers followed, providing for solutions with
spikes at any collection of nondegenerate (in some cases only topologically
nontrivial) critical points of the mean curvature, and even multiple spikes
accumulating at local minimal points of the mean curvature, or solutions
to the Cahn–Hilliard and other singularly perturbed equations and systems
(see, e.g., [FW], [Wax], [We1], [DFW], [O1], [O2], [Li], [BDS], [DY1],
[BSh], [GWW], and [WW2]).

There are a number of related works which give multi-peaked stationary
solutions to (7.1) and to related equations, with the peaks interior to Ω or
with some peaks interior and some on the boundary (see, e.g., [BFi], [WW1],
[BFu], and [GW2]).

Likewise, the Dirichlet problem has also attracted some attention, with
results providing detailed information about the existence and location of
a stationary peak (see, e.g., [J], [NW], and [D]).

The case of critical growth is quite different, due to a scale invariance and
related lack of compactness. Still there are some results and the interested
reader is referred to [WZ2], [WZ3], [APY1], [AMY], and [APY2], for
example.

All of the papers cited above concerned stationary solutions and most of
the techniques are designed for that situation, i.e, static rather than dynamic.
Our aim in this paper is to describe, in some precision, the dynamics of peaks
as they move along ∂Ω, including the location of stationary points. That
viewpoint was espoused in [FH] and [CP1], where the motion of interfaces
for the one-dimensional Allen–Cahn equation (a bistable version of (7.1))
was shown to be exponentially slow. Later, in [CP2], an invariant manifold
of layered states was shown to exist, on which this slow motion evolved.
Extensions of this approach to the one-dimensional Cahn–Hilliard equation
were given in [ABF], [BX1], and [BX2]. Related equations and systems
on higher dimensional domains were analyzed from this dynamic point of
view in [BFu], [AF], and [Ko]. Furthermore, when one studies the Morse
index of the stationary spike states, one is actually studying loc al dynamics
in a neighborhood of the critical point, and so the dynamical point of view
is actually contained in the work of [WW3] and [BSh], for instance. In all
these cases, a (local) approximately invariant manifold is constructed which
is shown to be approximately normally hyperbolic, although not necessarily
using that terminology. The ‘normal hyperbolicity’ allows for a reduction to
a finite-dimensional manifold upon which the dynamics is estimated and the
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stationary state examined for stability. This reduction is sometimes referred
to as a Lyapunov–Schmidt or saddle-point reduction, depending upon the
point of view or techniques employed by the authors. We believe that this
dynamical systems approach in a tubular neighborhood of the approximate
invariant manifold unifies, clarifies, and extends the previous results.

7.1. Existence of a normally hyperbolic invariant manifold consisting
of spike profiles. The profile of the peak solutions are roughly given by
translations of the rescaled solution w of following elliptic equation⎧⎨

⎩
∆w − w + f(w) = 0, y ∈ Rn,

w(0) = max w(y), w > 0,

w(y) → 0, y → ∞.

(7.2)

It is easy to see that w is the ground state of the rescaled (x = εy) stationary
equation of (7.1) considered on Rn.

Let L0 = ∆ − 1 + f ′(w) : H2(Rn) → L2(Rn). Assume

(F1) f ∈ Cm(R,R), m ≥ 1, with f(0) = f ′(0) = 0.
(F2) Equation (7.2) has a radially symmetric solution w ∈ Cm+2(Rn) such

that, for each integer 0 ≤ k ≤ m + 2,∣∣∂k
r w(y)

∣∣ ≤ Ce−µ|y|, y ∈ Rn,

for some C, µ > 0, where ∂r is differentiation in the radial direction.
(F3) For some b ∈ (0, 1), assume σ(L0) ∩ [−b,∞) = {λ1, 0}, where

σ(L0) is the spectrum of L0, and λ1 > 0 is the (simple) principle
eigenvalue with a radially symmetric eigenfunction v0 ∈ Cm+1(Rn)
which satisfies the same decaying property for 0 ≤ k ≤ m + 1 as
in (F2). Moreover, assume the eigenspace of 0 is spanned by{

∂w

∂yj
: j = 1, 2, . . . , n

}
.

Remark 7.1. Even though f is only assumed to be Cm , instead of Cm,β with
β > 0, since w and v0 are radially symmetric, one may actually prove that
w ∈ Cm+2(Rn) and v0 ∈ Cm+1(Rn) from the ODEs they satisfy.

The necessary smoothness of ∂Ω is not the main thrust of this paper
and so we do not provide details of a careful analysis along these lines.
Certainly, it is sufficient for ∂Ω to be of class Cm+3.

Under assumptions (F1)–(F3), the proof of the main result (Theorem 1.1)
will be given in the rest of this section.

Preparations. Define, for any q ∈ [1,∞), positive integer k, and u :
Ω → R,

|u|Wk,q
ε (Ω)

=
∑

0≤|α|≤k

ε
|α|− n

q |∂αu|Lq(Ω) =
∑

0≤|α|≤k

ε|α||∂αu|Lq(Ω,ε−ndµ).
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In particular, | · |W0,q
ε (Ω)

= | · |Lq(Ω,ε−ndµ). It is clear that the norm | · |Wk,q
ε (Ω)

=
| · |Wk,q(Ωε,x0 ) where x0 ∈ Rn and Ωε,x0 = { x−x0

ε
: x ∈ Ω}.

In order to obtain estimates uniform in sufficiently small ε > 0, we first
introduce some local coordinate systems near ∂Ω and prove a lemma on the
extension to Rn of functions defined on Ω̄.

Define Φ : ∂Ω × R→ R
n by

Φ(p, d) = p + dN(p), p ∈ ∂Ω.

Since Ω is compact with smooth boundary, there exists δ0 > 0 such that Φ
is a diffeomorphism on ∂Ω × [−δ0, δ0]. By the compactness of ∂Ω again,
for some C > 0 and small enough δ1 > 0 and any p ∈ ∂Ω, there exists
φ ∈ C∞

0 (Tp∂Ω,R) such that

{x ∈ Ω : |x − p| ≤ 3δ1} ⊂ {p + y + dN(p) : y ∈ Tp∂Ω, d < φ(y)},
{x ∈ ∂Ω : |x − p| ≤ 3δ1} ⊂ {p + y + dN(p) : y ∈ Tp∂Ω, d = φ(y)},

and

|∇φ(y)| ≤ C min{|y|, δ1}.
This induces a local coordinate diffeomorphism near p,

Φ̄(y, d) ≡ Φ(p + y + φ(y)N(p), d), y ∈ Tp∂Ω,(7.3)

where ∂Ω is given by Φ̄(y, 0) locally and ∂dΦ̄(y, 0) = N(Φ̄(y, 0)). In this
local coordinate system, the Laplacian can be written in terms of y and
d ≡ yn as

∆ = gij∂ij + 1√
G

∂i(g
ij
√

G)∂j(7.4)

where (gij)n×n is the inverse of the matrix (gij )n×n with gij = ∂yiΦ̄ · ∂yjΦ̄

and G = det(gij). From the construction, one finds that, for |d|, |y| ≤ 2δ1,

|√G − 1|C0 + ∣∣gij − δij

∣∣
C0 ≤ C(|y| + |d|) and |Dgij |Ck + |DG|Ck ≤ C.

(7.5)

With the help of this local coordinate system, one can prove the following
extension lemma.

Lemma 7.2. For any δ > 0 there exists a linear extension operator E
satisfying

|E|L(Wk,q
ε (Ω),Wk,q

ε (Rn)) ≤ C, k = 0, 1

for any q ∈ (1,∞) and some C > 0 independent of ε and
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(1) for any u ∈ W2,q(Ω) with ∂u
∂N |∂Ω ≡ 0, one has Eu ∈ W2,q(Rn) and

|E(ε2∆u) − ε2∆Eu|W0,q
ε (Rn)

≤ δ|u|W2,q
ε (Ω)

;
(2) for any p ∈ ∂Ω and any function γe ∈ W2,∞(Rn,R), even about the

hyperplane Tp∂Ω and satisfying |Dlγe(x̃)| ≤ C0e− |x̃|
C0 for l = 0, 1, 2,

one has∣∣∣∣γe

( · − p

ε

)
Eu − E

(
γe

( · − p

ε

)
u

)∣∣∣∣
Wk,q

ε (Rn)

≤ Cε|u|Wk,q
ε (Ω)

, k = 0, 1,

and ∣∣∣∣
∫
Rn

γe

(
x − p

ε

)
(Eu)(x)ε−ndx − 2

∫
Ω

γe

(
x − p

ε

)
u(x)ε−ndx

∣∣∣∣
≤ Cε|u|W0,q

ε (Ω)
,

for some C > 0 depending only on q and C0. For a function γo :
R

n → R, odd about the hyperplane Tp∂Ω and satisfying the same
decay property, one has∣∣∣∣

∫
Rn

γo

(
x − p

ε

)
(Eu)(x)ε−ndx

∣∣∣∣ ≤ Cε|u|W0,q
ε (Ω)

.

Proof. We give a sketch of the proof, which follows from the standard
construction of extension operators, while the ε scaling yields most of the
estimates. Let η ∈ C∞(R,R) be a cut-off function satisfying η|[−1,1] ≡ 1,
η|R\[−2,2] ≡ 0, and |η′|C0 ≤ 2. For δ1 ∈ (0, 1

2δ0], define the extension in
terms of the local coordinate map Φ

(Eu)(p, d) = η

(
d

δ1

)
u(p,−d), d > 0.

When considered as an operator from Wk,q
ε (Ω) to itself, k = 0, 1, it is easy

to verify that E has a bound C > 0 independent of ε ∈ (0, 1].
In the coordinate system given by Φ̄, near any p ∈ ∂Ω, (Eu)(Φ̄(y, d)) =

(Eu)(Φ̄(y,−d)), d ∈ [0, δ1], and then it is clear that Eu ∈ W2,q(Rn)

if u ∈ W2,q(Ω) and ∂u
∂N |∂Ω ≡ 0. The estimate for the commutator of E

and ε2∆ follows from (7.4) and (7.5) by taking sufficiently small δ1 and
a partition of unity.

For the given function γe, even about the hyperplane Tp∂Ω, let γ̄e(y, d) =
γe(

1
ε
(Φ̄(y, d) − p)). We have

γ̄e(y, d) − γ̄e(y,−d)

= γe

(
1

ε
(Φ̄(y, d) − p)

)
− γe

(
1

ε
(Φ̄(y, d) − p − 2σ)

)
,
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where

σ = φ(y)N(p) − d∇φ(y)√
1 + |∇φ(y)|2 = O(|y|(|y| + |d|)).

The desired inequalities for E, which show that Eu is almost even about ∂Ω,
follow from a rescaling and this symmetry-breaking estimate. ��

From the extension lemma and rescaling, we find that there exists a uni-
form C > 0, independent of sufficiently small ε > 0, such that

|u|
W

0,
nq

n−q
ε (Ω)

≤ C|u|W1,q
ε (Ω)

(7.6)

if q < n and

|u|C0(Ω) ≤ C|u|W1,q
ε (Ω)

, |u1u2|W1,q
ε (Ω)

≤ C|u1|W1,q
ε (Ω)

|u2|W1,q
ε (Ω)

(7.7)

if q > n.
In order to produce the manifold of spike-like solutions with the peak

moving on ∂Ω, we will also need to discuss the calculus for maps defined
on ∂Ω. Thus, the covariant derivative D along ∂Ω and the second funda-
mental form Π get involved naturally. For any v defined on ∂Ω and tangential
vector fields X, Y, Z, . . . along ∂Ω, we use the notation

Dv(X) = DXv = ∇Xv, D2v(X, Y ) = DXDYv − DDX Yv,

D3v(X, Y, Z) = . . .

and the higher order derivatives, as multilinear forms (maps) at each p ∈ ∂Ω,
are calculated similarly. Occasionally, D will appear with a subscript τ from
the tangent space, indicating the directional derivative in that direction. At
other times Dp is used to emphasize that the derivative is with respect to
p ∈ ∂Ω. Define

|u|Wk,q
ε (∂Ω)

=
∑

0≤i≤k

ε
i− n−1

q |D iu|Lq(∂Ω) =
∑

0≤i≤k

εi|D iu|Lq(∂Ω,ε1−ndµ).

The Sobolev space Ws,q
ε (∂Ω) can be defined by interpolation for non-in-

teger s. From elliptic estimates, the norm | · |Wk,q
ε (∂Ω)

can also be defined by
the Beltrami-Laplacian ∆∂Ω on ∂Ω. By a localization argument as in the
proof of Lemma 7.2, the trace estimates with constants uniform in ε hold
as well.

Let Lε = ε2∆ − 1 with the domain

D(Lε) =
{

u ∈ W2,q(Ω) : ∂u

∂N
(x) = 0, x ∈ ∂Ω

}
⊂ Lq(Ω).

Elliptic estimates on L−1
ε uniform in ε follow directly from the estimate

given in Lemma 7.2 on the commutator of ε2∆ and E. Clearly, Lε is
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dissipative and for 1 < q < ∞

|etLε|L(W0,q
ε (Ω)) ≤ e−t, |etLε|L(W0,q

ε (Ω),W1,q
ε (Ω)) ≤ C(1 + t−

1
2 )e−t for t > 0

(7.8)

for some C > 0 independent of ε and t. In order to guarantee that the
composition with f defines a smooth mapping in the phase space, we fix
q0 > n and take the phase space of (7.1) as

(7.9) X = W1,q0
ε (Ω) = W1,q0

ε (Ω) ∩ W1,2
ε (Ω)

with norm | · |X = | · |
W

1,q0
ε (Ω)

+ | · |W1,2
ε (Ω)

.

Note that the embedding constant from W1,q0
ε (Ω) to W1,2

ε (Ω) depends on ε
and thus | · |W1,2

ε (Ω)
can not be omitted in | · |X .

In order to apply our general theorem, we modify f so that the evolution
defines a semiflow globally in time. Thus, we consider

ut = ε2∆u − u + f̃ (u), where f̃ (u) = η(u) f(u).(7.10)

Here, η(s) ≥ 0 is a C∞ cut-off function satisfying

η(s) = 1, |s| ≤ 1 + 2s0; η(s) = 0, |s| ≥ 2 + 4s0,

where s0 = max
Rn

|w(x)|.

Note that | f̃ |Cm(R) < ∞. By composition, f̃ induces a mapping (with
a slight abuse of notation) f̃ : X → W0,q

ε (Ω), q ∈ [2, q0], with

| f̃ |Cm(X,W0,q
ε (Ω)) ≤ C, q ∈ [2, q0](7.11)

for some C > 0 independent of ε. Moreover, since the scalar function f̃ is
compactly supported and X ↪→ L∞, we have

• Dm f̃ : X → L(⊗m X, W0,q
ε (Ω)) is uniformly continuous.

From (7.8), the initial value problem of (7.10) with Neumann boundary
condition is well-posed globally in time in X and it generates a semiflow T t

ε

on X. Moreover, for any time T0 > 0, there exists B1 > 0 independent of
sufficiently small ε > 0 such that∣∣T t

ε

∣∣
Cm(X,X )

≤ B1 for all t ∈ [0, T0](7.12)

and DmT t
ε is uniformly continuous:

• for any ξ > 0, there exists ζ > 0 such that∣∣DmT t
ε (u1) − DmT t

ε (u2)
∣∣

L(⊗m X,X )
≤ ξ

for any t ∈ [0, T0] and u1, u2 ∈ X with |u1 − u2|X ≤ ζ .
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Construction of the approximate invariant manifold. For any p ∈ ∂Ω,
let

w̃ε,p(x) = w

(
x − p

ε

)
,

where w is the ground state given by (7.2). We first modify w̃ε,p so that it
satisfies the boundary condition. Given any v : ∂Ω → R, let h = H(v) :
Ω → R be the solution of

Lεh = 0 in Ω,
∂h

∂N
= v on ∂Ω.(7.13)

For any p ∈ ∂Ω, let

Wε,p = w̃ε,p − H

(
∂w̃ε,p

∂N

)
.(7.14)

Clearly, Wε,p ∈ D(Lε). Define the map ψε and the approximate invariant
manifold Mε as

ψε(p) = Wε,p and Mε = ψε(∂Ω).(7.15)

It is important to obtain estimates for the correction term H(
∂w̃ε,p

∂N ) and we
will start with ∂w̃ε,p

∂N .

Lemma 7.3. Let u be a C J radially symmetric function defined onRn which
satisfies the decaying property in (F2) for 0 ≤ k ≤ J. Let l, k ≥ 0 be in-
tegers with l + k ≤ J − 1. Then there exists C > 0 independent of ε > 0,
p ∈ ∂Ω, and τ1, . . . , τl ∈ Tp∂Ω, such that∣∣∣∣(Dp)

l

(
∂uε,p

∂N

)
(τ1, . . . , τl)

∣∣∣∣
Wk,q

ε (∂Ω)

≤ C

∣∣∣∣τ1

ε

∣∣∣∣ · · ·
∣∣∣∣τl

ε

∣∣∣∣, q ∈ [1,∞)

where uε,p(x) = u(
x−p

ε
).

Proof. Since u is radially symmetric, write u(x) = θ(|x|). Clearly, θ(ρ) is
even, smooth, and its derivatives up to the J-th order decay as O(e−µρ). We
have

∂uε,p

∂N
(x) = 1

ε
θ ′
( |x − p|

ε

)
x − p

|x − p| · N(x), for all x ∈ ∂Ω.(7.16)

From ∣∣∣∣ x − p

|x − p| · N(x)

∣∣∣∣ ≤ C|x − p| for x ∈ ∂Ω,

we obtain ∣∣∣∣∂uε,p

∂N

∣∣∣∣
W0,q

ε (∂Ω)

≤ C.
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Therefore, the lemma holds for l = 0 and k = 0. To estimate D
∂uε,p

∂N , we
take an arbitrary tangential vector field τ(x) on ∂Ω and compute

∇ετ

(
∂uε,p

∂N

)
= θ ′′

( |x − p|
ε

)
(x − p) · N(x)

ε|x − p|
(x − p) · τ(x)

|x − p|
+ θ ′

( |x − p|
ε

)(
(x − p) · ∇τ(x)N(x)

|x − p|
− (x − p) · N(x)

|x − p|2
(x − p) · τ(x)

|x − p|
)

.

Applying the same estimate to (x − p) · N and noting |∇τ N| ≤ C|τ| with
C being an upper bound of the second fundamental form of ∂Ω, we derive
the estimate for l = 0 and k = 1. A similar calculation further shows that
for any integer i ≥ 0 with 2i + 1 ≤ J ,∣∣ε2i D2i+1uε,p(N, . . . , N)

∣∣
W0,q

ε (∂Ω)
≤ C.

Using this estimate and the identity

∆∂Ωg(x) = ∆g(x) − H(x) · ∇g(x) − D2g(x)(N(x), N(x)) for x ∈ ∂Ω,

where ∆∂Ω is the Beltrami-Laplacian on ∂Ω and H(x) is the mean curvature
vector of ∂Ω, we obtain the estimate∣∣∣∣ε2∆∂Ω

∂uε,p

∂N

∣∣∣∣
W0,q

ε (∂Ω)

≤ C

(
1 +

∣∣∣∣ε2 ∂∆uε,p

∂N

∣∣∣∣
W0,q

ε (∂Ω)

)
.

Since ε2 ∂∆uε,p

∂N = ∂(∆u)ε,p

∂N and ∆u is radially symmetric and satisfies the
same decay property for derivatives up to the (J −2)-th order, the W2,q

ε (∂Ω)

estimate of ∂uε,p

∂N follows immediately. The estimate of | ∂uε,p

∂N |Wk,q
ε

with general
k > 0 follows in a similar manner inductively.

The estimate of (Dp)
l(

∂uε,p

∂N ) can be derived in the same fashion. As an
illustration for l = 1, we obtain from differentiating (7.16)

−Dp

(
∂uε,p

∂N

)
(ετ1)(x)

= θ ′′
( |x − p|

ε

)
(x − p) · N(x)

ε|x − p|
(x − p) · τ1

|x − p|
+ θ ′

( |x − p|
ε

)(
τ1 · N(x)

|x − p| − (x − p) · N(x)

|x − p|2
(x − p) · τ1

|x − p|
)

for any x ∈ ∂Ω. Since

|τ1 · N(x)| ≤ C|τ1| |x − p|
the estimate of |Dp(

∂uε,p

∂N )(τ1)|W0,q
ε (∂Ω)

follows immediately. The estimates
for the higher order Sobolev norms are obtained in a similar manner. ��
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Combining this lemma with the elliptic estimates, we obtain that, for
q ∈ (1,∞) and any integers k, l ≥ 0 with k + l ≤ m + 2,∣∣(εDp)

lψε

∣∣
L(⊗l(Tp∂Ω),Wk,q

ε (Ω))
(7.17)

+ 1

ε

∣∣∣∣(εDp)
l

[
H

(
w̃ε,p

∂N

)]∣∣∣∣
L(⊗l(Tp∂Ω),Wk,q

ε (Ω))
≤ C.

In particular, for l ≤ m + 1

∣∣(εDp)
lψε

∣∣
L(⊗l (Tp∂Ω),X)

+ 1

ε

∣∣∣∣(εDp)
l

[
H

(
w̃ε,p

∂N

)]∣∣∣∣
L(⊗l(Tp∂Ω),X)

≤ C

(7.18)

and thus ψε : ∂Ω → Wk,q
ε (Ω), for k ≤ m + 1 and q > 1, is a smooth

imbedding. Moreover, ψε : ∂Ω → Mε ⊂ Wk,q
ε almost preserves the metric

up to a scaling of ε. In fact, for any p ∈ ∂Ω and τ ∈ Tp∂Ω,

|εDτ w̃ε,p|Wk,q
ε (Ω)

=
∣∣∣∣∇w

(
x − p

ε

)
· τ

∣∣∣∣
Wk,q

ε (Ω)

= |∇w · τ|Wk,q(Ωε,p) = (
2− 1

q |∂x1w|Wk,q(Rn) + O(ε)
)|τ|,

where Ωε,p = { x−p
ε

: x ∈ Ω}. The last step, obtaining |∂x1w|Wk,q(Rn), is
based on the radial symmetry of w and a localization argument as in the
proof of Lemma 7.2. Along with Lemma 7.3, this implies

(7.19)
∣∣|εDτψε(p)|Wk,q

ε (Ω)
− 2− 1

q |∂x1w|Wk,q(Rn)|τ|∣∣ ≤ Cε|τ|,
0 ≤ k ≤ m + 1, q ∈ (1,∞).

Mε is approximately stationary. From the construction of Wε,p = ψε(p),
the flow there is expected to be almost stationary. In fact, we have

Lemma 7.4. There exists C > 0 such that, for any sufficiently small ε > 0
and p ∈ ∂Ω, the solution u(t, x) of (7.10) with initial data u(0, x) = Wε,p(x)
satisfies

|u(t, · ) − Wε,p|X ≤ CεeCt.

Proof. Let v(t, x) = u(t, x) − Wε,p(x). Clearly, v(0, · ) = 0 and

⎧⎨
⎩

vt = Lεv + f̃
(
w̃ε,p − H

(
∂w̃ε,p

∂N

)
+ v

)
− f̃ (w̃ε,p) ≡ Lεv + g(v),

∂v
∂N

∣∣
∂Ω

= 0, v(t, 0) = 0,

(7.20)
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where we recall Lε = ε2∆ − 1. For q > 1, Lemma 7.3 implies

|g(v)|W0,q
ε (Ω)

≤ C(ε + |v|W0,q
ε (Ω)

).

The desired estimate on v = u − Wε,p follows from (7.8). ��
Remark 7.5. Assumption (2) in Definition 2.1 of approximate invariant
manifolds is satisfied automatically due to the fact that Mε is compact.

Splitting along the manifold Mε. Let v0(x), with |v0|L2(Rn) = 1, be the
first eigenfunction (corresponding to the eigenvalue λ1) of the linearized
operator L0, defined prior to the Assumptions (F1)–(F3). It is well known
that v0 is also radially symmetric and decays exponentially in x much as w
in (F2). By our assumption that the unstable subspace of L0 is span{v0}
and the center subspace of L0 is span{∂x1w, . . . , ∂xnw}, we will use v0 and
Tψε(p)Mε ∼ span{∂τw}, where τ ∈ Tp∂Ω, to construct the unstable and
center subspaces along Mε, respectively.

For any p ∈ ∂Ω, let

ṽε,p(x) = v0

(
x − p

ε

)
and v̄ε,p = ṽε,p − H

(
∂ṽε,p

∂N

)
.

For any τ ∈ Tp∂Ω, let

aε,p(τ) =
∫

Ω

v0

(
x − p

ε

)
∇w

(
x − p

ε

)
· τε−ndx.

Since
∫

xn>0 v0∂xj wdx = 0, 1 ≤ j ≤ n − 1, we obtain from a rescaling
argument that |aε,p(τ)| ≤ Cε. Here aε,p can be viewed as a linear functional
on Tp∂Ω. Moreover, it is not hard to see that∣∣(εDp)

laε,p

∣∣ ≤ Cε, 0 ≤ l ≤ m + 1.

In fact, for any τ1 ∈ Tp∂Ω,

(Dετ1aε,p)(τ) = −
∫

Ω

τ1 · ∇
{
v0

(
x − p

ε

)
∇w

(
x − p

ε

)
· τ
}
ε1−ndx

= −
∫

∂Ω

{
v0

(
x − p

ε

)
∇w

(
x − p

ε

)
· τ

}
N · τ1ε

1−ndS

and then the desired inequality for m = 1 follows from N · τ1 =
O(|x − p| |τ1|). Simply repeating this process yields the inequality for
general m.

From Lemma 7.3, the correction term H(
∂ṽε,p

∂N ) is smooth in p and
satisfies∣∣∣∣(εDp)

lH

(
∂ṽε,p

∂N

)∣∣∣∣
L(⊗m (Tp∂Ω),Wk,q

ε (Ω))
≤ Cε, 0 ≤ k + l ≤ m + 1, q > 1,
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which along with the estimate for aε,p implies that v̄ε,p is smooth in p and
almost perpendicular to TWε,p Mε. Let Vε,p be the normalization of the part
of v̄ε,p orthogonal (in the sense of W0,2

ε (Ω)) to TWε,p Mε, i.e., |Vε,p|W0,2
ε (Ω)

= 1
and for some scalar bε,p,

Vε,p − bε,pv̄ε,p ∈ TWε,p Mε,

∫
Ω

Vε,pDετψε(p)ε−ndx = 0,

for all τ ∈ Tp∂Ω.

From the above property of aε,p, it is clear that

bε,p = 2 + O(ε),
∣∣(εDp)

lbε,p

∣∣ ≤ Cε, 0 ≤ l ≤ m + 1.

Therefore, for q ≥ 1 and integers k + l ≤ m + 1,∣∣(εDp)
lVε,p)

∣∣
L(⊗l(Tp∂Ω),Wk,q

ε (Ω))
≤ C and(7.21) ∣∣(εDp)

l(Vε,p − ṽε,p)
∣∣

L(⊗l(Tp∂Ω),Wk,q
ε (Ω))

≤ Cε.

Define

Xu
ε,p = span{Vε,p}, Xc

ε,p = TWε,p Mε = Dψε(p)Tp∂Ω, and

Xs
ε,p = {

v ∈ X :
∫

Ω

vṽdx = 0, for all ṽ ∈ Xc
ε,p ⊕ Xu

ε,p

}
.

Let Πα
ε,p, α = u, s, c, be the projections associated with this splitting. Since

Xu,c
ε,p are finite dimensional with bases consisting of functions in W0,q

ε (Ω)

for any q ≥ 1, these projections can be extended to W0,q
ε (Ω) for any q > 1.

These are orthogonal projections on W0,2
ε (Ω) = L2(Ω, ε−ndµ). From the

smoothness of ψε and Vε,p in p, it is clear that there exists B > 0 independent
of sufficiently small ε > 0 such that

(7.22)
∣∣Πα

ε,p

∣∣
Cm((∂Ω, 1

ε2 〈 · ,· 〉),L(X ))
,

∣∣Πα
ε,p

∣∣
Cm+1((∂Ω, 1

ε2 〈 · ,· 〉),L(W0,q
ε (Ω)))

≤ B,

α = u, s, c,

where (∂Ω, 1
ε2 〈 · , · 〉) denotes the Riemannian manifold ∂Ω with the inner

product scaled by 1
ε2 .

Mε is approximately normally hyperbolic. In order to prove that the
above splitting along Mε is approximately normally hyperbolic, we start
with the estimate of the linearization of (7.10). Fix p ∈ ∂Ω and let u(t, x)
be the solution of (7.10) with initial value u(0, · ) = ψε(p) = Wε,p. Let
w(t, x) be the solution of the linearized equation

wt = Lεw + f̃ ′(u(t, · ))w with w(0, · ) ∈ X.(7.23)
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It follows from (7.8) and (7.11) that

|w(t, · )|X ≤ CeCt |w(0, · )|X,(7.24)

|w(t, · )|W0,q
ε (Ω)

≤ CeCt|w(0, · )|W0,q
ε (Ω)

, q ∈ (1,∞).

Let

L̄ε,p = Lε + f ′(w̃ε,p) = Lε + f̃ ′(w̃ε,p) and w̄(t, · ) = et L̄ε,pw(0, · ).
By writing w using the variation of constants formula

w(t, · ) = w̄(t, · ) +
∫ t

0
e(t−s)L̄ε,p( f̃ ′(u(s, · )) − f̃ ′(w̃ε,p))w(s, · )ds

and applying Lemmas 7.3 and 7.4, we obtain a refined estimate for q ∈
(1,∞)

|w(t) − w̄(t)|X ≤ CεeCt |w(0)|W0,q
ε (Ω)

, if m > 1.(7.25)

If m = 1, then for any ξ > 0, there exists ε0 > 0 such that

|w(t) − w̄(t)|X ≤ CξeCt|w(0)|W0,q
ε (Ω)

∀ε < ε0.(7.26)

To study the behavior of w̄(t, · ) in each of the three directions, we first
consider the action of L̄ε,p in these directions. Firstly, for any τ̃ ∈ Tp∂Ω,
since ∂w is in the kernel of L0, we have

L̄ε,pDψε(p)(ετ̃) = − f ′(w̃ε,p)H

(
Dετ̃

∂w̃ε,p

∂N

)
.

From Lemma 7.3, we obtain

|L̄ε,pDψε(p)(ετ̃ )|W0,q
ε (Ω)

≤ Cε|τ̃ | for all q > 1.(7.27)

Secondly, from inequality (7.21) and the fact that v0 is an eigenvector of L0
with the eigenvalue λ1 > 0, we have

|(L̄ε,p − λ1)Vε,p|W0,q
ε (Ω)

≤ Cε for all q > 1.(7.28)

Finally, for any ws ∈ Xs
ε,p ∩ D(L̄ε), taking the L2(Ω, ε−ndµ) inner product

of L̄ε,pw
s with Vε,p and Dψε(p)(ετ) and using the orthogonality of the

decomposition, inequalities (7.27) and (7.28), and the fact that L̄ε,p is self-
adjoint in L2(Ω, ε−ndµ), we obtain for any q > 1

∣∣Πu
ε,pL̄ε,pw

s
∣∣

X
+ ∣∣Πc

ε,pL̄ε,pw
s
∣∣

X
≤ Cε|ws|W0,q

ε (Ω)
.(7.29)

Note that here we use the finite-dimensionality of the center and unstable
subspaces, where all norms are equivalent.
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Coming back to w̄(t, · ), we look at its decomposition

w̄(t, · ) = a(t)Vε,p + Dψε(p)(ετ(t)) + ws(t).(7.30)

From the uniform bound on Πα
ε,p, α = u, c, s, and inequality (7.8), we have

|a(t)|, |τ(t)|, |ws(t)|W0,q
ε (Ω)

≤ CeCt|w(0)|W0,q
ε (Ω)

for all q > 1(7.31)

and

|ws(t)|X ≤ CeCt|w(0)|X .(7.32)

Taking the L2(Ω, ε−ndµ) inner product of (7.30) with L̄ε,pDψε(p)(ετt(t))
and L̄ε,pVε,p and using inequalities (7.27), (7.28), and (7.31), and the facts
that L̄ε,p is self-adjoint and L̄ε,pw̄ = w̄t , we obtain for any q > 1

|at − λ1a| + |τt | ≤ CeCtε|w(0)|W0,q
ε (Ω)

.(7.33)

Finally, we estimate the evolution of ws(t), the stable component of w̄(t).
Since we only made assumptions on the spectrum of the operator

L0 = ∆ − 1 + f ′(w) on Rn,

our strategy is to extend the domain of ws(t) to Rn in an appropriate way
and to estimate its evolution. For q > 1, let Π̃s be the spectral projection
operator to the eigenspace Xs ⊂ Lq(Rn) of L0 corresponding to the subset
σ(L0) \ {λ1, 0} ⊂ (−∞,−b). Let S be the operator defined by (Sφ)(x̃) =
φ(p + εx̃) and define the modified ‘extension’ operator

ΛE = Π̃sSE : X̃s
ε,p → Xs

where E is defined in Lemma 7.2 for a δ > 0 to be determined and

X̃s
ε,p = {

γ ∈ W0,q
ε (Ω) :

∫
Ω

γvdx = 0, for all v ∈ Xu
ε,p ⊕ Xc

ε,p

}
.

Obviously ΛE can not be an isomorphism. However, we will define a left
inverse of ΛE , i.e., a modified ‘restriction’ operator ΛR. Since, for any
γ : Ω → R,

|γ |W0,q
ε (Ω)

≤ |SEγ |Lq(Rn) ≤ C|γ |W0,q
ε (Ω)

,

SE(X̃s
ε,p) is a closed subspace of Lq(Rn). For γ ∈ X̃s

ε,p, write

SEγ = γ s + γ cu where γ s = Π̃sSEγ.

By taking the inner product of SEγ with v0 and ∂τw and using Lemmas 7.2
and 7.3, we obtain

|γ cu|Wk,q(Rn) ≤ Cε|γ |W0,q
ε (Ω)

, 0 ≤ k ≤ m + 1.
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Therefore,

1

2
|SEγ |Lq(Rn) ≤ |Π̃s SEγ |Lq(Rn) ≤ 2|SEγ |Lq(Rn)

and

A : Π̃sSEX̃s
ε,p → Xcu = (I − Π̃s)Lq(Rn), as A(γ s) = γ cu

is a bounded operator with |A|L(Π̃sSEX̃s
ε,p,Xcu) ≤ Cε. By the Hahn–Banach

theorem, A can be extended to an operator on Xs with the same bound.
From the construction, A satisfies that, if γ s = Π̃sSEγ with γ ∈ X̃s

ε,p, then
(I + A)γ s = SEγ . Let ΛR : Xs → X̃s

ε,p be given by

ΛRγ s = (S−1(I + A)γ s)|Ω.

Clearly, ΛRΛE = I and |ΛR|L(Xs,W0,q
ε (Ω))

, |ΛE |L(X̃s
ε,p,L

q(Rn)), and

inf
{|ΛEγ |Lq(Rn) : γ ∈ X̃s

ε,p, |γ |W0,q
ε (Ω)

= 1
}−1

are bounded uniformly in sufficiently small ε > 0.
Let

w̃s(t) = ΛEws(t) = ΛEΠs
ε,pw̄(t).

Since ∂ws

∂N = 0 and ws = ΛRw̃s, we have

ws = ws − H

(
∂ws

∂N

)
= ΛRw̃s − H

(
∂

∂N

(
ΛRw̃s

))
.

From the definition of ws(t) and w̄s(t), we have

w̃s
t = L0w̃

s + (
ΛEΠs

ε,pL̄ε,p − L0ΛE
)(

ΛRw̃s − H

(
∂

∂N

(
ΛRw̃s

)))

+ ΛEΠs
ε,pL̄ε,p(w̄ − ws),

where H is defined in (7.13). On the one hand, due to inequalities (7.27),
(7.28), and (7.31),∣∣ΛEΠs

ε,pL̄ε,p(w̄ − ws)
∣∣

W0,q
ε (Rn)

≤ CeCtε|w(0)|W0,q
ε (Ω)

.

On the other hand, for any γ ∈ W2,q
ε (Ω) with ∂γ

∂N |∂Ω = 0,

L0ΛEγ − ΛE L̄ε,pγ = ε2Π̃s S(∆Eγ − E∆γ)

+ Π̃s S( f(w̃ε,p)Eγ − E( f(w̃ε,p)γ)).

Therefore, Lemma 7.2 and the above estimates on ΛE and ΛR imply

|L0ΛEγ − ΛE L̄ε,pγ |Lq(Rn) ≤ Cδ|γ |W2,q
ε (Ω)

,
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for some C > 0 independent of ε and δ. Since ΛRw̃s − H( ∂
∂N (ΛRw̃s))

satisfies the boundary condition of Lε if w̃s ∈ W2,q(Rn), we have∣∣∣∣Π̃s
(
L0ΛE − ΛEΠs

ε,pL̄ε,p
)(

ΛRw̃s − H

(
∂

∂N

(
ΛRw̃s

)))∣∣∣∣
Lq(Rn)

≤ Cδ
∣∣ΛRw̃s

∣∣
W2,q

ε (Ω)
≤ Cδ|w̃s|W2,q(Rn).

By our Assumption (F3) on the spectrum of L0, standard perturbation theory
of operators, and the above estimates, we obtain

|ws(t)|X ≤ C
(|w̃s(t)|W1,q0 (Rn) + |w̃s(t)|W1,2(Rn)

)
≤ Ce−bt |ws(0)|X + CεeCt(|w(0)|W0,2

ε (Ω)
+ |w(0)|

W
0,q0
ε (Ω)

).

(7.34)

The combination of inequalities (7.25)–(7.29), (7.33), and (7.34) implies

|a(t) − eλ1ta(0)| + |τ(t)| ≤ CεeCt(|w|W0,2
ε (Ω)

+ |w|
W

0,q0
ε (Ω)

) if m > 1.

(7.35)

As a consequence, for α = u, s, c and w ∈ X with Πα
ε,pw = 0, we have

∣∣Πα
ε,p DT t

ε (ψε(p))w
∣∣

X
≤ CεeCt(|w|W0,2

ε (Ω)
+ |w|

W
0,q0
ε (Ω)

) if m > 1.

(7.36)

If m = 1, then for any ξ > 0, there exists ε0 > 0 such that

|a(t) − eλ1ta(0)| + |τ(t)|, ∣∣Πα
ε,p DT t

ε (ψε(p))w
∣∣

X
(7.37)

≤ CξeCt(|w|W0,2
ε (Ω)

+ |w|
W

0,q0
ε (Ω)

), ∀ε < ε0.

Therefore, the splitting X = Xu
ε,p ⊕ Xc

ε,p ⊕ Xu
ε,p is approximately invariant

and approximately hyperbolic for the time-t0 map T t0
ε of the semiflow de-

fined by the parabolic equation (7.10) for some t0 > 1 chosen large enough
but independent of sufficiently small ε.

Dynamical peak solutions of (7.1). We use the above construction of the
approximately normally hyperbolic invariant manifold Mε, the splitting

X = W1,q0
ε (Ω) ∩ W1,2

ε (Ω) = Xu
ε,p ⊕ Xc

ε,p ⊕ Xs
ε,p,

and their related estimates. Apply Theorems 2.2, 2.4, 4.2, 6.3, and 6.5, for
sufficiently small ε > 0, to the time-t0 map T t0

ε of the semiflow defined
by the parabolic equation (7.10) for some t0 > 1 chosen large enough but
independent of sufficiently small ε. They imply the following

• For the map T t0
ε , there exists a unique Cm normally hyperbolic invari-

ant manifold M∗
ε = Ψε(∂Ω) ⊂ X, where Ψε ∈ Cm(∂Ω, X) satisfies

Ψε(p) − ψε(p) ∈ Xu
ε,p ⊕ Xs

ε,p.
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• There exist unique Cm invariant center unstable manifold Wcu∗
ε and

center stable manifold Wcs∗
ε of M∗

ε .
• There exists invariant foliations on Wcu∗

ε and Wcs∗
ε by Cm unstable and

stable fibers, respectively.
• M∗

ε is independent of q0 > n due to the uniqueness of the invariant mani-
folds characterized by statements such as Proposition 4.10. Moreover,
since the backward flow is well-defined on Wcu∗

ε , for any u ∈ Wcu∗
ε , we

have u ∈ W2,q
ε (Ω) for all q ≥ 2, and ∂u

∂N |∂Ω = 0.
• From Theorem 4.2 and its parallel version for the center unstable mani-

fold, there exist δ > 0 and C > 0 independent of ε > 0 such that at
any p ∈ ∂Ω, in the frame given by Xu

ε,p ⊕ Xc
ε,p ⊕ Xs

ε,p, the manifolds
M∗

ε , Wcu∗
ε , and Wcs∗

ε can be written as graphs of appropriate Cm map-
pings whose Cm norms are bounded by C and whose domains contain
balls of radius δ. In particular Ψε satisfies |Ψε − ψε|C0(∂Ω,X ) ≤ Cε.
Moreover, by choosing µ in Theorem 4.2 sufficiently small, we obtain
|Ψε − ψε|C1((∂Ω, 1

ε 〈 · ,· 〉),X ) → 0 as ε → 0, where (∂Ω, 1
ε2 〈 · , · 〉) indicates

that the metric on ∂Ω should be scaled by 1
ε
.

In order to demonstrate that M∗
ε is invariant under the semiflow T t

ε

generated by (7.10), we have to verify the type of weak uniform continuity
condition required in (H5) given in Subsect. 6.1. This will be done for k = 1
in (H5). In fact, we will prove that

• for any sufficiently small ε > 0 and a bounded set Γ ⊂ X, given
any ξ > 0, there exists ζ > 0 so that |T t

ε (u) − T t0
ε (u)|X ≤ ξ for any

t ∈ [t0, t0 + ζ] and u ∈ Γ.

It is important to notice that ζ > 0 does not have to be independent of ε.
In order to prove this statement, one first notices from the cut-off on f
given in (7.10), the variation of constants formula, and the smoothing effect
of etLε , that (−Lε)

1
2 T t0

ε (Γ) ⊂ X is bounded. For t ∈ [t0, t0 + ζ], from

T t
ε (u) − T t0

ε (u) =
∫ t

t0

[
e(t−s)Lε LεT t0

ε (u) + e(t−s)Lε f̃
(
T s

ε (u)
)]

ds

and the same smoothing effect of etLε again, the above statement follows im-
mediately. Therefore, from Theorem 6.1 and Remark 6.6, the manifold M∗

ε

and its center unstable manifold, center stable manifold, unstable foliations,
and stable foliations are all locally invariant under (7.10). Moreover, since
M∗

ε is in an O(ε) neighborhood of Mε in W1,q0
ε (Ω) with q0 > n, (7.10) is

equivalent to the original equation (7.1) in this region. Therefore, these struc-
tures are locally invariant under (7.1) in the sense of Theorem 6.1 as well.

Qualitatively, M∗
ε consists of functions each of which achieves its max-

imum close to ∂Ω (in the last subsection we show that the peak actually lies
on ∂Ω) and decays exponentially in x. Dynamically, M∗

ε is almost stationary
for the evolution governed by (7.1). Therefore, the manifold M∗

ε represents
a collection of special solutions each with a single spike on ∂Ω which moves
slowly along ∂Ω for all t ∈ R.
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7.2. Dynamics on M∗
ε . Due to the invariance of M∗

ε under (7.1), this
parabolic equation defines a tangent vector field on the (n −1)-dimensional
manifold M∗

ε . For any p ∈ ∂Ω, there exists τε(p) ∈ Tp∂Ω such that

DΨε(p)(ετε(p)) = ε2∆Ψε(p) − Ψε(p) + f(Ψε(p)).(7.38)

Let

ψ̃ε(p) = Ψε(p) − ψε(p) ∈ Xu
ε,p ⊕ Xs

ε,p,

which satisfies

|ψ̃ε|C0(∂Ω,X ) ≤ Cε, lim
ε→0

|ψ̃ε|C1((∂Ω, 1
ε
〈 · ,· 〉),X) = 0.(7.39)

Since

ε2∆w̃ε,p − w̃ε,p + f(w̃ε,p) = 0,

(7.38) can be rewritten as

DΨε(p)(ετε(p)) = L̄ε,pψ̃ε(p) − f ′(w̃ε,p)H

(
∂w̃ε,p

∂N

)
+ g(7.40)

where

g = f

(
w̃ε,p − H

(
∂w̃ε,p

∂N

)
+ ψ̃ε(p)

)

− f(w̃ε,p) − f ′(w̃ε,p)

(
ψ̃ε(p) − H

(
∂w̃ε,p

∂N

))
.

The remainder term g can be estimated by using Lemma 7.3 and (7.39) for
q ≥ 2, giving

|g|W0,q
ε (Ω)

≤ Cε2 if m > 1(7.41)

and if m = 1, then for any ξ > 0, there exists ε0 > 0 such that

|g|W0,q
ε (Ω)

≤ Cξε ∀ε < ε0.(7.42)

Moreover, if f ∈ C1,β with β ∈ (0, 1], then

|g|W0,q
ε (Ω)

≤ Cε1+β.(7.43)

The estimate on τε will be based on (7.40).
To derive an equation for ψ̃ not involving τε, let

(
Xq,c

ε,p

)⊥ = {
w ∈ W0,q

ε (Ω) :
∫

Ω

wvdx = 0 ∀v ∈ Xc
ε,p

}
.

Consider the decomposition W0,q
ε (Ω) = (Xq,c

ε,p)
⊥ ⊕ DΨε(p)(Tp∂Ω). One

may verify that the projection from W0,q
ε (Ω) to (Xq,c

ε,p)
⊥ associated to this
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decomposition is given by

ΠM
ε,p = I − DΨε(p)

(
Dψε(p) + Πc

ε,pDψ̃ε(p)
)−1

Πc
ε,p(7.44)

= (
I − Πc

ε,p

)(
I − Dψ̃ε(p)

(
Dψε(p) + Πc

ε,pDψ̃ε(p)
)−1

Πc
ε,p

)
which is well-defined and bounded uniformly in p ∈ ∂Ω and ε � 1
due to (7.39). Moreover, since DΨε(p)(Tp∂Ω) = TΨε(p)M∗

ε is close to
Xc

ε,p = Tψε(p)Mε, it is clear that there exists C > 0 independent of p and ε

such that ∣∣(ΠM
ε,pL̄ε,p

)−1∣∣
L((Xq,c

ε,p)
⊥,W2,q

ε (Ω)∩D(Lε))
≤ C.(7.45)

Applying ΠM
ε,p to (7.40) and using (7.28), (7.29), and the fact that ψ̃ε(p) ∈

Xu
ε,p ⊕ Xs

ε,p, we have

ψ̃ε(p) = (
ΠM

ε,p L̄ε,p

∣∣
(Xq,c

ε,p)⊥
)−1

ΠM
ε,p

(
f ′(w̃ε,p)H

(
∂w̃ε,p

∂N

)
− g

)
.(7.46)

Approximation of ψ̃ε and the scale of the motion on M∗
ε

Lemma 7.6. If m = 1, then for any ξ > 0 there exists ε0 uniform in p such
that for any ε < ε0 and q ≥ 2∣∣∣∣ψ̃ε(p) − ((

I − Πc
ε,p

)
L̄ε,p

∣∣
(Xq,c

ε,p)⊥
)−1(

I − Πc
ε,p

)

×
(

f ′(w̃ε,p)H

(
∂w̃ε,p

∂N

))∣∣∣∣
W2,q

ε (Ω)

≤ Cξε.

If m > 1, then there exists C > 0 uniform in ε � 1 and p such that for
q ≥ 2 we have

|Dψ̃ε(p)(τ)|W2,q
ε (Ω)

≤ Cε|τ|, τ ∈ Tp∂Ω,∣∣∣∣ψ̃ε(p) − ((
I − Πc

ε,p

)
L̄ε,p

∣∣
(Xq,c

ε,p)⊥
)−1(

I − Πc
ε,p

)

×
(

f ′(w̃ε,p)H

(
∂w̃ε,p

∂N

))∣∣∣∣
W2,q

ε (Ω)

≤ Cε2.

Proof. The proof for the case m = 1 is straightforward based on (7.39),
(7.42), (7.44), and (7.46). If m ≥ 2, then we have |ψ̃ε|C2((∂Ω, 1

ε 〈 · ,· 〉),X ) ≤ C.
The definition of g and ΠM

ε,p and direct computation show that, for some C
uniform in ε and p,

1

ε
|Dετ g|W0,q

ε (Ω)
,
∣∣DετΠ

M
ε,p

∣∣
L(W0,q

ε (Ω))
≤ Cτ, ∀τ ∈ Tp∂Ω.

Therefore the estimate on Dψ̃ε follows immediately from (7.46) and
Lemma 7.3 which in turn implies the remaining inequality. ��
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As ε → 0, the scale of |ετε| gives the scale of the velocity field on M∗
ε .

Lemma 7.7. There exists C > 0 independent of sufficiently small ε > 0
such that for any q ≥ 2,

|τε|,
∣∣∣∣ψ̃ε(p) − ((

I − Πc
ε,p

)
L̄ε,p

∣∣
(Xq,c

ε,p)⊥
)−1(

I − Πc
ε,p

)

×
(

f ′(w̃ε,p)H

(
∂w̃ε,p

∂N

))∣∣∣∣
W2,q

ε (Ω)

≤ C
(
ε2 + |g|W0,q

ε (Ω)

)
.

Proof. In order to estimate τε, we consider the L2(Ω, ε−ndµ) inner products
of the terms on the right side of (7.40) with

−Dετw̃ε,p = ∇w

(
x − p

ε

)
· τ = ∇ετw̃ε,p

for τ ∈ Tp∂Ω. Recall that D is with respect to p and ∇ is with respect to x.
The following equations will be used frequently

(ε2∆ − 1)H

(
∂w̃ε,p

∂N

)
= 0(7.47)

and
(
ε2∆ − 1 + f ′(w̃ε,p)

)(∇w

(
x − p

ε

)
· τ

)
= 0.

Firstly, using the above equations and repeated integration by parts, we
compute

(7.48)∫
Ω

f ′(w̃ε,p)H

(
∂w̃ε,p

∂N

)(
∇w

(
x − p

ε

)
· τ
)

ε−ndx

=
∫

Ω

H

(
∂w̃ε,p

∂N

)
(ε2∆ − 1)Dετ w̃ε,pε

−ndx

=
∫

∂Ω

{
H

(
∂w̃ε,p

∂N

)
Dετ

∂w̃ε,p

∂N
−
(

∂

∂N
H

(
∂w̃ε,p

∂N

))
Dετ w̃ε,p

}
ε2−ndS.

We will first focus on the second term on the right side of the above equation.
In fact, from (7.47) and repeated integration by parts again,∫

∂Ω

(
∂

∂N
H

(
∂w̃ε,p

∂N

))
Dετ w̃ε,pε

2−ndS =
∫

∂Ω

∂w̃ε,p

∂N
Dετ w̃ε,pε

2−ndS

= Dετ

∫
Ω

(
ε2

2
|∇w̃ε,p|2 + 1

2
w̃2

ε,p − F(w̃ε,p)

)
ε−ndx

= −
∫

∂Ω

e

(
x − p

ε

)
N · τε1−ndS
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where F(0) = 0, F ′ = f , and e is radially symmetric and is actually the
scaled energy density of this parabolic system at w:

e = 1

2
|∇w|2 + 1

2
w2 − F(w).

Therefore,

∫
Ω

f ′(w̃ε,p)H

(
∂w̃ε,p

∂N

)(
∇w

(
x − p

ε

)
· τ

)
ε−ndx

=
∫

∂Ω

e

(
x − p

ε

)
N · τε1−ndS +

∫
∂Ω

H

(
∂w̃ε,p

∂N

)
Dετ

∂w̃ε,p

∂N
ε2−ndS.

(7.49)

We also obtain from integrating by parts twice,

∫
Ω

L̄ε,pψ̃ε(p)

(
∇w

(
x − p

ε

)
· τ

)
ε−ndx =

∫
∂Ω

ψ̃ε(p)Dετ

∂w̃ε,p

∂N
ε2−ndS.

(7.50)

The term
∫
∂Ω

e( x−p
ε

)N · τε1−ndS will be computed in the next lemma and
thus it follows from Lemma 7.3 and estimates (7.19), (7.39), (7.41), (7.49),
and (7.50) that

|τε · τ| ≤ C

∣∣∣∣
∫

Ω

Dετ w̃ε,p(Dψε(p)(ετε) + Dψ̃ε(p)(ετε))ε
−ndx

∣∣∣∣
≤ C

(
ε2 + |g|W0,q

ε (Ω)

)|τ|
and the estimate on τε follows.

To complete the proof of the lemma, we apply I − Πc
ε,p to (7.40).

From (7.45), (7.28), and (7.29), we obtain for any q ≥ 2,∣∣∣∣ψ̃ε(p) − ((
I − Πc

ε,p

)
L̄ε,p

∣∣
(Xq,c

ε,p)⊥
)−1(

I − Πc
ε,p

)

×
(

f ′(w̃ε,p)H

(
∂w̃ε,p

∂N

))∣∣∣∣
W2,q

ε (Ω)

≤ C|g|W0,q
ε (Ω)

+ o(1)|τε|,

where o(1) → 0 as ε → 0 uniformly in p. This, along with the estimate
on τε, yields the desired estimate. ��
Lemma 7.8. There exists C > 0 uniform in ε � 1 and p ∈ ∂Ω such that∣∣∣∣

∫
∂Ω

e

(
x − p

ε

)
N · τε1−ndS − c1ε

2∇κ(p) · τ

∣∣∣∣ ≤ Cε3|τ|
where

c1 = 1

2(n − 1)

∫
Rn−1

e(x̃)|x̃|2dx̃ = sn−2

n2 − 1

∫ ∞

0
rn|∇w(r)|2dr > 0,

with sn−2 being the surface area of the unit sphere of dimension n − 2.
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Here the definition of the mean curvature κ is taken as the trace of
the second fundamental form determined by N, not divided by n − 1, i.e.,
κ(p) = H(p) · N, where H(p) is the mean curvature vector.

Proof. Without loss of generality, we may assume p = 0, Tp∂Ω =
{xn = 0}, τ = e1, where (e1, . . . , en) is the standard basis. Locally Ω
is given by xn > φ(x̄), x̄ = (x1, . . . , xn−1) with |x̄| ≤ δ. Clearly, φ(0) = 0,
∇φ(0) = 0 and it is standard that ∇κ(p) = ∇∆φ(0). Due to the exponential
decay of w and its derivatives, we only need to compute this integral in
a δ-neighborhood∫

∂Ω∩{|x̄|<δ}
e

(
x − p

ε

)
N · τε1−ndS =

∫
|ȳ|< δ

ε

e

(
ȳ + 1

ε
φ(εȳ)en

)
φx1(εȳ)dȳ.

Since e is radially symmetric and decays exponentially and φ(x̄) = O(|x̄|2)
for |x̄| ≤ δ, ∣∣∣∣e

(
ȳ + 1

ε
φ(εȳ)en

)
− e(ȳ)

∣∣∣∣
≤
∫ 1

0

∣∣∣∣∂re

(
ȳ + s

ε
φ(εȳ)en

)∣∣∣∣
s
ε2 φ(εȳ)2√

|ȳ|2 + 1
ε2 φ(εȳ)

ds

≤ Cε2|ȳ|3e− µ
2 |ȳ|, for |ȳ| ≤ δ

ε
.

Therefore,∣∣∣∣
∫

∂Ω

e

(
x − p

ε

)
N · τε1−ndS −

∫
|ȳ|< δ

ε

e(ȳ)φx1(εȳ)dȳ

∣∣∣∣ ≤ Cε3.

The second integral in the above can be computed by using the Taylor
expansion of φ, the fact that ∇κ(p) = ∇∆φ(0), the radial symmetry, and the
exponential decay of e and the desired inequality follows. Finally, since w is
radially symmetric, it satisfies

∂rrw + n − 1

r
∂rw − w + f(w) = 0.

Multiplying this equation by rn+1∂rw and integrating on [0,∞) immediately
lead to the second integral form of c1. ��

Leading order approximation of τε. In order to derive a refined estimate
on τε, we need to consider h � H(

∂w̃ε,p

∂N ) and ψ̃ more carefully in the local
coordinate system Φ̄(y, d), (y, d) ∈ Tp∂Ω × R, given by (7.3). The key is
that their principle parts are symmetric in y.

We start with a weighted norm estimate of h by considering Lε((
x−p

ε
)αh)

and ∂
∂N ((

x−p
ε

)αh) where α = (α1, . . . , αn) is a multi-index. For |α| = 1, we
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have from Lemma 7.3∣∣∣∣Lε

((
x − p

ε

)
h

)∣∣∣∣
Wm,q

ε (Ω)

= |2ε∇h|Wm,q
ε (Ω) ≤ Cε

and from the exponential decay of w∣∣∣∣ ∂

∂N

((
x − p

ε

)
h

)∣∣∣∣
Wm+1,q

ε (∂Ω)

=
∣∣∣∣1εhN + x − p

ε

∂w̃ε,p

∂N

∣∣∣∣
Wm+1,q

ε (∂Ω)

≤ C.

These inequalities imply that |( x−p
ε

)h|Wm+1,q
ε (Ω)

≤ Cε. Inductively in |α| and
in a similar fashion, we obtain for any index α,∣∣∣∣

(
x − p

ε

)α

Dlh

∣∣∣∣
W0,q

ε (Ω)

≤ Cε, l = 0, 1, . . . , m + 2,(7.51)

for some C > 0 independent of p and ε � 1.
Let η ∈ C∞(R,R) be a smooth cut-off function satisfying η|[−1,1] ≡ 1,

η|
R\[− 3

2 , 3
2 ] ≡ 0, and |η′|C0 ≤ 3. For δ1 > 0 satisfying the requirement (7.3)

in the definition of Φ̄, let

h0 = ηδ1 h and h1 = (1 − ηδ1)h where ηδ1(y, d) = η

(√|y|2 + d2

δ1

)
.

For any orthogonal reflection R on Tp∂Ω, let

h̄0(y, d) = h0(Φ̄(y, d)) − h0(Φ̄(Ry, d)).

Lemma 7.9. There exists C > 0 independent of p ∈ ∂Ω and sufficiently
small ε > 0 such that

|h̄0|Wm+1,2
ε ((Rn)+)

, |h1|Wm+2,2
ε (Ω)

≤ Cε2,

where (Rn)+ = {(y, d) : d > 0}.
Proof. From its definition, h satisfies Lεh = (ε2∆ − 1)h = 0 and ∂h

∂N |∂Ω =
∂w̃ε,p

∂N . By considering Lεh1 and ∂h1
∂N |∂Ω, the estimate on h1 follows directly

from (7.17), the ε scaling in the problem, the exponential decay of w, and
standard elliptic estimates.

From the form (7.4) of the Laplacian in (y, d) coordinates, h0 is sup-
ported in {|y| < 2δ1} and satisfies{

Lεh0 = ε2√
G
∂i
(
gij

√
G∂jh0

)− h0 = ε2√
G
∂i
(
gij

√
Gh∂jηδ1

)+ ε2∂iηδ1 gij∂jh

∂dh0|d=0 = ηδ1

∂w̃ε,p

∂N ,

where yn is understood as d. We also used that locally {d = 0} = ∂Ω,
∂n = ∂

∂N , and
∂ηδ1
∂N (y, 0) = 0. We compute the boundary term using the
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notation in the construction of Φ̄,

ηδ1(y, 0)
∂w̃ε,p

∂N
(Φ̄(y, 0)) = 1

ε
η

( |y|
δ1

)
wr

(
y

ε
+ φ(y)

ε
N(p)

)

× y + φ(y)N(p)√|y|2 + |φ(y)|2 · N(p) − ∇φ(y)√
1 + |∇φ(y)|2 .

From the definition of φ and the above identity, it is easy to verify that on
{d = 0},

|∂dh̄0|Wm,2
ε (Rn−1)

=
∣∣∣ηδ1( · , 0)

∂w̃ε,p

∂N
(Φ̄( · , 0)) − ηδ1(R · , 0)

∂w̃ε,p

∂N
(Φ̄(R · , 0))

∣∣∣
Wm,2

ε (Rn−1)

≤ Cε.

From Lemma 7.3, one can obtain that the right side of Lεh0 is bounded
by Cε2 in the norm | · |Wm+1,2

ε ((Rn)+)
. Thus it is easy to verify

Lεh̄0 = ε2(gij (Ry, d) − gij (y, d))∂ijh0(Φ̄(y, d)) + O(ε2).

The desired estimate on h̄0 follows immediately from the weighted norm
estimate (7.51). ��

From Lemma 7.7, the almost symmetry of H(
∂w̃ε,p

∂N ) in turn implies the
almost symmetry of ψ̃ε(p). In fact, let

ψ̃ε,0(p) = ηδ1ψ̃ε(p) and ψ̃ε,1(p) = (1 − ηδ1)ψ̃ε(p).

For any orthogonal reflection R on Tp∂Ω, let

ψ̄ε,0(p, y, d) = ψ̃ε,0(p, Φ̄(y, d)) − ψ̃ε,0(p, Φ̄(Ry, d)).

Lemma 7.10. For any ξ > 0, there exists ε0 > 0 such that

|ψ̄ε,0(p)|W2,2
ε ((Rn)+)

, |ψ̃ε,1(p)|W2,2
ε (Ω)

≤ ξε, ∀ε < ε0

where (Rn)+ = {(y, d) : d > 0}. Moreover, if f ∈ C1,β with β ∈ (0, 1],
then there exists C > 0 independent of p ∈ ∂Ω and sufficiently small ε > 0
so that

|ψ̄ε,0(p)|W2,2
ε ((Rn)+)

, |ψ̃ε,1(p)|W2,2
ε (Ω)

≤ Cε1+β.

Proof. First, we notice that ∂dψ̃ε,1(p)(y, 0) = 0. For any τ ∈ Tp∂Ω, since
the function Dετ w̃ε,p decays exponentially, it is easy to verify that∣∣∣∣

∫
Ω

ψ̃ε,1(p)Dετ w̃ε,pε
−ndx

∣∣∣∣ ≤ Cεl|τ|, l = 1, 2, . . .
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which along with the fact that Πc
ε,pψ̃ε(p) = 0 implies that

(7.52)
∣∣Πc

ε,pψ̃ε,1(p)
∣∣

Wk,q
ε (Ω)

,
∣∣Πc

ε,pψ̃ε,0(p)
∣∣

Wk,q
ε (Ω)

≤ Cεl,

k ≤ m + 1, l = 1, 2, . . . , q ≥ 2.

Therefore, from (7.27), (7.39), (7.40), Lemma 7.7, and the decay of w,

|ψ̃ε,1(p)|W2,2
ε (Ω)

≤ Cεl + ∣∣(I − Πc
ε,p

)
ψ̃ε,1(p)

∣∣
W2,2

ε (Ω)

≤ Cεl + C
∣∣L̄ε,p

(
I − Πc

ε,p

)
ψ̃ε,1(p)

∣∣
W0,2

ε (Ω)

≤ Cεl + C|L̄ε,p((1 − ηδ1)ψ̃ε(p))|W0,2
ε (Ω)

≤ C
(
ε2 + |g|W0,q

ε (Ω)

)
.

The desired estimates on ψ̃ε,1 follows from (7.42) or (7.43).
The estimate for ψ̄ε,0(p) is obtained in a similar fashion to that for h̄0

which also begins with a weighted norm estimate. From (7.40), (7.39),
Lemma 7.3, the exponential decay of w, and the fact that x−p

ε
≤ Cε−1 on Ω,

we have∣∣∣∣Lε

(
x − p

ε
ψ̃ε(p)(x)

)∣∣∣∣
W0,2

ε (Ω)

=
∣∣∣∣2ε∇ψ̃ε(p) + x − p

ε

(
DΨε(p)(ετε) − g + f ′(w̃ε,p)(h − ψ̃ε(p))

)∣∣∣∣
W0,2

ε (Ω)

≤ Cε + ε−1|g|W0,2
ε (Ω)

and ∣∣∣∣ ∂

∂N

(
x − p

ε
ψ̃ε(p)(x)

)∣∣∣∣
W1,2

ε (∂Ω)

=
∣∣∣∣1ε ψ̃ε(p)(x)N

∣∣∣∣
W1,2

ε (∂Ω)

≤ C.

Therefore, the elliptic estimate implies∣∣∣∣x − p

ε
ψ̃ε(p)(x)

∣∣∣∣
W2,2

ε (Ω)

≤ Cε + ε−1|g|W0,2
ε (Ω)

.(7.53)

Since w is radially symmetric and decays exponentially, in the (y, d)
coordinates it is easy to verify that, for any τ ∈ Tp∂Ω,

|w̃ε,p( · , · ) − w̃ε,p(R · , · )|Wm,q
ε (Ω),(7.54)

|Dετ w̃ε,p(R · , · ) − DεRτ w̃ε,p( · , · )|Wm,q
ε (Ω) ≤ Cε|τ|, q ≥ 2,

which along with (7.52) implies
∣∣Πc

ε,pψ̄ε,0(p)
∣∣

Wk,q
ε (Ω)

≤ Cε2, k ≤ m + 1.(7.55)
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Equation (7.40) implies that ψ̃ε,0(p) satisfies ∂d(ψ̃ε,0(p))(y, 0) = 0 and

L̄ε,pψ̃ε,0(p) = ε2

√
G

∂i
(
gij

√
G∂jψ̃ε,0(p)

)+ (−1 + f ′(w̃ε,p)
)
ψ̃ε,0(p)

= ε2

√
G

∂i

(
gij

√
Gψ̃ε(p)∂jηδ1

)+ ε2∂iηδ1 gij∂jψ̃ε(p)

+ ηδ1

(
DΨε(p)(ετε) − g + f ′(w̃ε,p)h

)
.

From Lemmas 7.7 and 7.9

|(L̄ε,pψ̃ε,0(p))( · , · ) − (L̄ε,pψ̃ε,0(p))(R · , · )|W2,2
ε (Ω)

(7.56)

≤ C
(
ε2 + |g|W0,2

ε (Ω)
+ ε

∣∣ f ′(w̃ε,p( · , · )) − f ′(w̃ε,p(R · , · ))∣∣
W0,2

ε (Ω)

)
.

Therefore, from (7.55), (7.56), and (7.53),

|ψ̄ε,0(p)|W2,2
ε (Ω)

≤ C
(
ε2 + |L̄ε,pψ̄ε,0(p)|W0,2

ε (Ω)

)
≤ C

(
ε2 + |g|W0,2

ε (Ω)
+ ε

∣∣ f ′(w̃ε,p( · , · )) − f ′(w̃ε,p(R · , · ))∣∣
W0,2

ε (Ω)

+ ∣∣(gij ( · , · ) − gij(R · , · ))ε2∂ijψ̃ε,0(p)
∣∣

W0,2
ε (Ω)

)
and (7.42) and (7.43) yield the desired inequality. ��

These two lemmas imply that H(
∂w̃ε,p

∂N ) and ψ̃ε(p) are almost radially
symmetric in the directions of Tp∂Ω. Moreover (7.54) also implies that
Dετ

w̃ε,p

∂N is almost odd in the τ direction for any τ ∈ Tp∂Ω. This symmetry
property allows us to refine the estimates on τε.

Proposition 7.11. For any ξ > 0, there exists ε0 > 0 such that∣∣τε − c2ε
2∇κ(p)

∣∣ ≤ Cξε2, ∀ε < ε0.

Moreover, if f ∈ C1,β with β ∈ (0, 1], then there exists C > 0 independent
of p ∈ ∂Ω and sufficiently small ε > 0 so that∣∣τε − c2ε

2∇κ(p)
∣∣ ≤ Cε2+β,

where c2 > 0 is a constant determined only by w.

Proof. For any τ ∈ Tp∂Ω, take the L2(ε−ndx) inner product of (7.40)
and Dετ w̃ε,p. From (7.49), (7.50), (7.42), (7.43), (7.54), and Lemmas 7.9,
7.10, and 7.8, we obtain
∣∣∣∣
∫

Ω

Dετε
Ψε(p)Dετ w̃ε,pε

−ndx − c1ε
2∇κ(p) · τ

∣∣∣∣ ≤
{
ξε2, if f ∈ C1

Cε2+β, if f ∈ C1,β.
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The conclusion of the proposition follows from estimate (7.19) and
Lemmas 7.3 and 7.7, taking c2 ≡ 2c1

|∂x1w|L2(Rn )

> 0. ��

Locations of the peaks. Fix p ∈ ∂Ω, consider the locations of the peaks
of Ψε(p), i.e., the set {x : Ψε(p)(x) = maxΩ̄ Ψε(p)}.
Proposition 7.12. Assume f ∈ C1,β with β ∈ (0, 1]. For each p ∈ ∂Ω and
ε � 1, there exists a unique p̃ = p̃(p, ε) ∈ ∂Ω such that it is a unique
nondegenerate global max of ψε(p)(x) on Ω̄ and |p − p̃| ≤ Cε2.

Proof. For this purpose, it is easier to work with the variable

z = x − p

ε
∈ Ωε,p.

Using the definition of g, (7.39), (7.40), Lemmas 7.3 and 7.7, and stand-
ard elliptic estimates one may show that there exists C > 0 independent
of p and ε such that |ψ̃ε(p)|C2,β(Ωε,p) ≤ Cε. This along with Lemma 7.3
implies

|Ψε(p) − w|C2,β(Ωε,p) ≤ Cε.

Since w achieves its unique maximum at the non-degenerate critical point
0 ∈ ∂Ωε,p, the max of Ψε(p)(z) has to be achieved in a neighborhood of 0

B(Cε
1
2 ) = {z : |z| ≤ Cε

1
2 }.

Moreover, the C2,β estimate also implies that Ψε(p)(z) is concave in z and
for some a, C > 0, the Hessian as a quadratic form satisfies

D2Ψε(p)(z) ≤ −a, ∀z ∈ B(Cε
1
2 ).

We claim Ψε(p)(z) achieves its max at a unique point. To see this,
we notice that B(Cε

1
2 ) ∩ ∂Ωε,p is almost flat, and thus, for any z1, z2 ∈

B(Cε
1
2 )∩Ωε,p, there exists a curve in B(Cε

1
2 )∩Ωε,p with curvature bounded

by Cε2 joining z1 and z2. The above uniform concavity implies that, along
such a curve Ψε(p)(z) achieves its max only once. Therefore, there exists
zε ∈ B(Cε

1
2 ) ∩ Ωε,p such that Ψε(p) achieves its max only at zε.

From the Neumann boundary condition, it is clear that zε is a critical
point of Ψε(p)(z) no matter whether it is on ∂Ωε,p . Moreover, since Ψε(p)(z)
is C2,β close to w and 0 is a nondegenerate critical point of w, zε is also
a nondegenerate critical point of Ψε(p)(z) and

|zε| ≤ Cε.

Finally, we show zε ∈ ∂Ωε,p. Otherwise, there exists a unique ẑ ∈ ∂Ωε,p
such that

|zε − ẑ| = d̃ ≡ d(zε, ∂Ωε,p) ≤ Cε and also zε − ẑ ⊥ Tẑ∂Ωε,p.
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The boundary condition gives

0 = ∂ψε(p)

∂N
(ẑ) =

∫ 1

0
D2Ψε(p)((1 − s)zε + sẑ)(ẑ − zε, Nẑ)ds

≤
∫ 1

0
D2w((1 − s)zε + sẑ)(ẑ − zε, Nẑ)ds + Cε|ẑ − zε|.

Since ẑ−zε = −bNẑ for some 0 < b < Cε and, for all z satisfying |z| ≤ Cε,
we have

D2w(x) ≤ − 1

C

the above inequality immediately implies that zε = ẑ ∈ ∂Ωε,P. ��
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