Cosmetic crossings and genus-one knots

Cheryl L. Balm

Michigan State University

Saturday, December 3, 2011

Joint work with S. Friedl, E. Kalfagianni and M. Powell
Crossing disks and crossing circles

Let K be an oriented knot in S^3 and let C be a crossing of K.
Crossing disks and crossing circles

Let \(K \) be an oriented knot in \(S^3 \) and let \(C \) be a crossing of \(K \).

- A **crossing disc** for \(K \) corresponding to \(C \) is an embedded disc \(D \subset S^3 \) such that \(K \) intersects \(\text{int}(D) \) twice, once for each branch of \(C \), with zero algebraic intersection number.

- \(L = \partial D \) is a **crossing circle** for \(K \) at \(C \).
Crossing disks and crossing circles

Let K be an oriented knot in S^3 and let C be a crossing of K.

- A **crossing disc** for K corresponding to C is an embedded disc $D \subset S^3$ such that K intersects $\text{int}(D)$ twice, once for each branch of C, with zero algebraic intersection number.

- $L = \partial D$ is a **crossing circle** for K at C.

- A crossing change at C is equivalent to performing ε-Dehn surgery on L, where $\varepsilon = -1$ if C is a positive crossing and $\varepsilon = 1$ if C is negative.
Nugatory crossing conjecture

Let K' be the oriented knot obtained from K by performing a crossing change at C.

Let K' be the oriented knot obtained from K by performing a crossing change at C.

Nugatory crossing conjecture (Problem 1.58 of Kirby’s list): If a crossing change on a knot K yields a knot isotopic to K, then the crossing must be nugatory i.e. cosmetic crossings do not exist.
Nugatory crossing conjecture

Let K' be the oriented knot obtained from K by performing a crossing change at C.

- C is a **nugatory crossing** if and only if the crossing circle L bounds a disk in $S^3 - K$.

Nugatory crossing conjecture (Problem 1.58 of Kirby's list): If a crossing change on a knot K yields a knot isotopic to K, then the crossing must be nugatory i.e. cosmetic crossings do not exist.
Nugatory crossing conjecture

Let K' be the oriented knot obtained from K by performing a crossing change at C.

- C is a **nugatory crossing** if and only if the crossing circle L bounds a disk in $S^3 - K$.

- C is **cosmetic** if C is not nugatory and K' is isotopic to K i.e. there exists an orientation-preserving diffeomorphism $f : S^3 \longrightarrow S^3$ with $f(K) = K'$.
Nugatory crossing conjecture

Let K' be the oriented knot obtained from K by performing a crossing change at C.

- C is a **nugatory crossing** if and only if the crossing circle L bounds a disk in $S^3 - K$.

- C is **cosmetic** if C is *not* nugatory and K' is isotopic to K i.e. there exists an orientation-preserving diffeomorphism $f : S^3 \rightarrow S^3$ with $f(K) = K'$.

- **Nugatory crossing conjecture** (Problem 1.58 of Kirby’s list): If a crossing change on a knot K yields a knot isotopic to K, then the crossing must be nugatory i.e. cosmetic crossings do not exist.
Nugatory crossing conjecture

Known results
NCC is known to hold for:

- Unknot (Gabai, Scharleman-Thompson, 1989)
- 2-bridge knots (Torisu, 1999)
- Fibered knots (Kalfagianni, 2011)

The NCC has been reduced to the case of prime knots. (Torisu)
Nugatory crossing conjecture

Known results
NCC is known to hold for:

- Unknot (Gabai, Scharleman-Thompson, 1989)
- 2-bridge knots (Torisu, 1999)
- Fibered knots (Kalfagianni, 2011)

The NCC has been reduced to the case of prime knots. (Torisu)

Our main goal
Find obstructions to cosmetic crossings for genus-one knots.
Notation

- For a knot or link J, let $M_J = S^3 - \eta(J)$.
Notation

- For a knot or link \(J \), let \(M_J = S^3 - \eta(J) \).
- Let \(S \) be a minimum-genus Seifert surface for \(K \) in \(M_L \). We may choose \(S \) such that \(S \cap D \) is a single arc \(\alpha \subset S \).
Notation

- For a knot or link \(J \), let \(M_J = S^3 - \eta(J) \).
- Let \(S \) be a minimum-genus Seifert surface for \(K \) in \(M_L \). We may choose \(S \) such that \(S \cap D \) is a single arc \(\alpha \subset S \).
- Let \(K', S' \) be obtained from \(K, S \) by \(\varepsilon \)-surgery on \(L \).
Notation

- For a knot or link J, let $M_J = S^3 - \eta(J)$.
- Let S be a minimum-genus Seifert surface for K in M_L. We may choose S such that $S \cap D$ is a single arc $\alpha \subset S$.

Let K', S' be obtained from K, S by ε-surgery on L.

Note that if $M_{K \cup L}$ is reducible, then C is a nugatory crossing.
Minimum-genus Seifert surfaces

Proposition
If \(K \cong K' \), then \(S \) and \(S' \) are minimum-genus Seifert surfaces for \(K \) and \(K' \), respectively, in \(S^3 \).

This follows from the following result of Gabai:

Gabai (1987)
Let \(M \) be a Haken manifold whose boundary is a nonempty union of tori. Let \(S \) be a Thurston norm minimizing surface representing an element of \(H_2(M, \partial M) \) and let \(P \) be a component of \(\partial M \) such that \(P \cap S = 0 \). Then with at most one exception (up to isotopy) \(S \) remains norm minimizing in each manifold \(M(a) \) obtained by filling \(M \) along an essential simple closed curve \(a \) in \(P \). In particular \(S \) remains incompressible in all but at most one manifold obtained by filling \(P \).
Crossing changes and Seifert surfaces

So a crossing change at C which gives rise to an isotopic knot K' corresponds to an embedded arc α on a minimum-genus Seifert surface S.

If α is inessential, then C is nugatory.

We want to consider a cosmetic crossing C for a genus-one knot, so α will be essential (i.e. non-separating) on S.
So a crossing change at C which gives rise to an isotopic knot K' corresponds to an embedded arc α on a minimum-genus Seifert surface S.

If α is inessential, then C is nugatory.
Crossing changes and Seifert surfaces

- So a crossing change at C which gives rise to an isotopic knot K' corresponds to an embedded arc α on a minimum-genus Seifert surface S.
- If α is inessential, then C is nugatory.
- We want to consider a cosmetic crossing C for a genus-one knot, so α will be essential (i.e. non-separating) on S.
Choosing a basis for H_1S

Let $\{a_1, a_2\}$ be a basis for H_1S such that a_1 meets α and a_2 each once and $\alpha \cap a_2 = \emptyset$.

Note that $\{a_1, a_2\}$ also generates H_1S'.
Seifert matrices

We may choose appropriate orientations to obtain a Seifert matrix
\[
V = \begin{pmatrix} a & b \\ b + 1 & d \end{pmatrix}
\]
for \(S \). Then \(V' = \begin{pmatrix} a + \varepsilon & b \\ b + 1 & d \end{pmatrix} \) is a Seifert matrix for \(S' \).
Alexander polynomials

- V and V' give rise to the Alexander polynomials

\[\Delta_K(t) \doteq \det(V - tV^T) = ad(1 - t)^2 - (b - (b + 1)t)((b + 1) - tb) \]

\[\Delta_{K'}(t) \doteq (a + \varepsilon)d(1 - t)^2 - (b - (b + 1)t)((b + 1) - tb) \]

- Since $K \cong K'$, $d = \text{lk}(a_2, a_2) = 0$.
- So K is algebraically slice. This gives us our first obstruction...
Obstructions

Main goal
Find obstructions to cosmetic crossings for genus-one knots.

Obstruction 1
If K is a genus-one knot which admits a cosmetic crossing, then K is algebraically slice. Hence $Δ_k(t) = f(t)f(t^{-1})$ for some $f(t) ∈ \mathbb{Z}[t]$ and $\det(K) = |Δ_k(-1)| = n^2$.
Double branched covers

Let Y_K be the double cover of S^3 branching over K and define $Y_{K'}$ similarly.
Double branched covers

Let Y_K be the double cover of S^3 branching over K and define $Y_{K'}$ similarly.

Then $V + V^T = \begin{pmatrix} 2a & 2b + 1 \\ 2b + 1 & 0 \end{pmatrix}$ is a presentation matrix for $H_1 Y_K$ and $V' + (V')^T = \begin{pmatrix} 2a + 2\varepsilon & 2b + 1 \\ 2b + 1 & 0 \end{pmatrix}$ is a presentation matrix for $H_1 Y_{K'}$.
$H_1 Y_K$ and $H_1 Y_{K'}$

- $V + V^T = \begin{pmatrix} 2a & 2b + 1 \\ 2b + 1 & 0 \end{pmatrix}$ and $V' + (V')^T = \begin{pmatrix} 2a + 2\varepsilon & 2b + 1 \\ 2b + 1 & 0 \end{pmatrix}$.

- If $b = 0, -1$, then $H_1 Y_K = H_1 Y_{K'} = \{0\}$.

This gives us our second obstruction...
Homology of double branched covers

\[H_1 Y_K \text{ and } H_1 Y_{K'} \]

\(\begin{align*}
V + V^T &= \begin{pmatrix} 2a & 2b + 1 \\ 2b + 1 & 0 \end{pmatrix} \text{ and } \\
V' + (V')^T &= \begin{pmatrix} 2a + 2\varepsilon & 2b + 1 \\ 2b + 1 & 0 \end{pmatrix}.
\end{align*} \)

\(\begin{align*}
&\text{If } b = 0, -1, \text{ then } H_1 Y_K = H_1 Y_{K'} = \{0\}. \\
&\text{If } b \neq 0, -1, \text{ let } d = \gcd(2a, 2b + 1) \text{ and } d' = \gcd(2a + 2\varepsilon, 2b + 1).
\end{align*} \)
$H_1 Y_K$ and $H_1 Y_{K'}$

- $V + V^T = \begin{pmatrix} 2a & 2b + 1 \\ 2b + 1 & 0 \end{pmatrix}$ and $V' + (V')^T = \begin{pmatrix} 2a + 2\varepsilon & 2b + 1 \\ 2b + 1 & 0 \end{pmatrix}$.

- If $b = 0, -1$, then $H_1 Y_K = H_1 Y_{K'} = \{0\}$.

- If $b \neq 0, -1$, let $d = \gcd(2a, 2b + 1)$ and $d' = \gcd(2a + 2\varepsilon, 2b + 1)$.

- Then $H_1 Y_K = \mathbb{Z}_d \oplus \mathbb{Z}_{\frac{(2b+1)^2}{d}}$ and $H_1 Y_{K'} = \mathbb{Z}_{d'} \oplus \mathbb{Z}_{\frac{(2b+1)^2}{d'}}$.
$H_1 Y_K$ and $H_1 Y_{K'}$

1. $V + V^T = \begin{pmatrix} 2a & 2b + 1 \\ 2b + 1 & 0 \end{pmatrix}$ and $V' + (V')^T = \begin{pmatrix} 2a + 2\varepsilon & 2b + 1 \\ 2b + 1 & 0 \end{pmatrix}$.

2. If $b = 0, -1$, then $H_1 Y_K = H_1 Y_{K'} = \{0\}$.

3. If $b \neq 0, -1$, let $d = \gcd(2a, 2b + 1)$ and $d' = \gcd(2a + 2\varepsilon, 2b + 1)$.

4. Then $H_1 Y_K = \mathbb{Z}_d \oplus \mathbb{Z}_{(2b+1)^2}$ and $H_1 Y_{K'} = \mathbb{Z}_{d'} \oplus \mathbb{Z}_{(2b+1)^2}$.

5. $K \cong K' \Rightarrow H_1 Y_K = H_1 Y_{K'} \Rightarrow d = d' = 1 \Rightarrow H_1 Y_K = H_1 Y_{K'} = \mathbb{Z}_{(2b+1)^2}$.

6. This gives us our second obstruction...
Obstructions

Main goal
Find obstructions to cosmetic crossings for genus-one knots.

Obstruction 1
If K is a genus-one knot which admits a cosmetic crossing, then K is algebraically slice. Hence $\Delta_k(t) \div f(t)f(t^{-1})$ for some $f(t) \in \mathbb{Z}[t]$ and $\det(K) = |\Delta_k(-1)| = n^2$.

Obstruction 2
If K is a genus-one knot which admits a cosmetic crossing, then $H_1 Y_K$ is a finite cyclic group.
S-equivalence

If $K \cong K'$, then V is S-equivalent to V'.
S-equivalence

If $K \cong K'$, then V is S-equivalent to V'.

Question

Can the matrices $\begin{pmatrix} a & b \\ b+1 & 0 \end{pmatrix}$ and $\begin{pmatrix} a+1 & b \\ b+1 & 0 \end{pmatrix}$ be S-equivalent?
S-equivalence

If $K \cong K'$, then V is S-equivalent to V'.

Question

Can the matrices
\[
\begin{pmatrix}
a & b \\
(b+1) & 0
\end{pmatrix}
\quad \text{and} \quad
\begin{pmatrix}
a+1 & b \\
(b+1) & 0
\end{pmatrix}
\]
be S-equivalent?

Proposition

For any $b > 4$ with $b \equiv 0$ or 2 (mod 3) there exists $a \in \mathbb{Z}$ such that
\[
\begin{pmatrix}
a & b \\
(b+1) & 0
\end{pmatrix}
\quad \text{and} \quad
\begin{pmatrix}
a+1 & b \\
(b+1) & 0
\end{pmatrix}
\]
are S-equivalent.

But there's hope yet...
Unique Seifert surfaces

If K has a *unique* (up to isotopy) minimum-genus Seifert surface and $K \cong K'$, then V and V' must be congruent over \mathbb{Z}.
Unique Seifert surfaces

If K has a unique (up to isotopy) minimum-genus Seifert surface and $K \cong K'$, then V and V' must be congruent over \mathbb{Z}.

Proposition

If $\begin{pmatrix} a & b \\ b+1 & 0 \end{pmatrix}$ and $\begin{pmatrix} c & b \\ b+1 & 0 \end{pmatrix}$ are congruent over \mathbb{Z}, then there exists $n \in \mathbb{Z}$ such that $a + n(2b + 1) = c$.

If $c = a + 1$, this can only happen if $b = 0, -1$.

Theorem

If K is a genus-one knot with a unique minimum-genus Seifert surface and K admits a cosmetic crossing, then $\Delta_k(t)$.

Unique Seifert surfaces

If K has a *unique* (up to isotopy) minimum-genus Seifert surface and $K \cong K'$, then V and V' must be *congruent* over \mathbb{Z}.

Proposition

If \[
\begin{pmatrix}
 a & b \\
 b + 1 & 0
\end{pmatrix}
\] and \[
\begin{pmatrix}
 c & b \\
 b + 1 & 0
\end{pmatrix}
\] are congruent over \mathbb{Z}, then there exists $n \in \mathbb{Z}$ such that $a + n(2b + 1) = c$.

If $c = a + 1$, this can only happen if $b = 0, -1$.

Theorem

If K is a genus-one knot with a unique minimum-genus Seifert surface and K admits a cosmetic crossing, then $\Delta_k(t) \equiv 1$.
Pretzel knots

Let $K = P(p, q, r)$ with p, q and r odd.

- $\det(P(p, q, r)) = |pq + qr + pr|$
- $g(K) \leq 1$
- $P(p, q, r)$ is algebraically slice if and only if $pq + qr + pr = -m^2$, for some odd $m \in \mathbb{Z}$
Pretzel knots

Corollary

A knot $P(p, q, r)$ with p, q and r odd does not admit cosmetic crossings if any of the following are true:

(a) $pq + qr + pr \neq -m^2$, for every odd $m \in \mathbb{Z}$
(b) $q + r = 0$ and $\gcd(p, q) \neq 1$
(c) $p + q = 0$ and $\gcd(q, r) \neq 1$
Corollary

A knot $P(p, q, r)$ with p, q and r odd does not admit cosmetic crossings if any of the following are true:

(a) $pq + qr + pr \neq -m^2$, for every odd $m \in \mathbb{Z}$

(b) $q + r = 0$ and $\gcd(p, q) \neq 1$

(c) $p + q = 0$ and $\gcd(q, r) \neq 1$

Proof

(a) follows from Obstruction 1.
Pretzel knots

Corollary
A knot \(P(p, q, r) \) with \(p, q \) and \(r \) odd does not admit cosmetic crossings if any of the following are true:

(a) \(pq + qr + pr \neq -m^2 \), for every odd \(m \in \mathbb{Z} \)
(b) \(q + r = 0 \) and \(\gcd(p, q) \neq 1 \)
(c) \(p + q = 0 \) and \(\gcd(q, r) \neq 1 \)

Proof
(a) follows from Obstruction 1.
There is a genus one surface for \(P(p, q, r) \) which gives a Seifert matrix
\[
V = \frac{1}{2} \begin{pmatrix} p + q & q - 1 \\ q + 1 & q + r \end{pmatrix}
\]
and a presentation matrix \(\begin{pmatrix} p + q & q \\ q & q + r \end{pmatrix} \) for \(H_1 Y_{P(p,q,r)} \).
Pretzel knots

Corollary
A knot $P(p, q, r)$ with p, q and r odd does not admit cosmetic crossings if any of the following are true:

(a) $pq + qr + pr \neq -m^2$, for every odd $m \in \mathbb{Z}$
(b) $q + r = 0$ and $\gcd(p, q) \neq 1$
(c) $p + q = 0$ and $\gcd(q, r) \neq 1$

Proof
(a) follows from Obstruction 1. There is a genus one surface for $P(p, q, r)$ which gives a Seifert matrix
\[V = \frac{1}{2} \begin{pmatrix} p + q & q - 1 \\ q + 1 & q + r \end{pmatrix} \] and a presentation matrix
\[\begin{pmatrix} p + q & q \\ q & q + r \end{pmatrix} \]
for $H_1 Y_{P(p,q,r)}$. If $q + r = 0$ and $\gcd(p + q, q) \neq 1$, then $H_1 Y_{P(p,q,r)}$ is not cyclic, so (b) follows from Obstruction 2. A similar argument holds for (c).
Knots with at most 12 crossings

- There are 23 knots of genus one with at most 12 crossings.
Applications Knots with low crossing number

Knots with at most 12 crossings

▶ There are 23 knots of genus one with at most 12 crossings.
▶ Only four of these — 6_1, 9_{46}, 10_3 and $11n_{139}$ — have a square determinant, and all four of these are algebraically slice.
Knots with at most 12 crossings

- There are 23 knots of genus one with at most 12 crossings.
- Only four of these — 6_1, 9_{46}, 10_3 and 11_{139} — have a square determinant, and all four of these are algebraically slice.
- 6_1 and 10_3 are 2-bridge knots.
Knots with at most 12 crossings

- There are 23 knots of genus one with at most 12 crossings.
- Only four of these — 6₁, 9₄₆, 1₀₃ and 1₁₁₁₃₉ — have a square determinant, and all four of these are algebraically slice.
- 6₁ and 1₀₃ are 2-bridge knots.
- 9₄₆ = P(3, 3, −3).
Knots with at most 12 crossings

- There are 23 knots of genus one with at most 12 crossings.
- Only four of these — 6_1, 9_{46}, 10_3 and 11_{139} — have a square determinant, and all four of these are algebraically slice.
- 6_1 and 10_3 are 2-bridge knots.
- $9_{46} = P(3,3,-3)$.
- This leaves $11_{139} = P(-5,3,-3)$.
Knots with at most 12 crossings

$P(-5, 3, -3)$ has a genus-one Siefert surface with Seifert matrix $V = \begin{pmatrix} -1 & 1 \\ 2 & 0 \end{pmatrix}$. So $H_1 Y_{P(-5,3,-3)} = \mathbb{Z}_9$.

But $|\det(V)| = 2$, so we can make use of the following result of Trotter:

Trotter (1973)

Let V be a Seifert matrix with $|\det(V)|$ a prime or 1. Then any matrix which is S-equivalent to V is congruent to V over \mathbb{Z}.

V is congruent to $\begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix}$ or $\begin{pmatrix} -2 & 1 \\ 2 & 0 \end{pmatrix}$ only if there exists $n \in \mathbb{Z}$ with $-1 + 5n = 0$ or $-1 + 5n = -2$, respectively.
Knots with at most 12 crossings

\(P(-5, 3, -3) \) has a genus-one Siefert surface with Seifert matrix
\[
V = \begin{pmatrix} -1 & 1 \\ 2 & 0 \end{pmatrix}.
\]
So \(H_1 Y_{P(-5, 3, -3)} = \mathbb{Z}_9 \).

But \(|\det(V)| = 2 \), so we can make use of the following result of Trotter:

Trotter (1973)

Let \(V \) be a Seifert matrix with \(|\det(V)| \) a prime or 1. Then any matrix which is \(S \)-equivalent to \(V \) is congruent to \(V \) over \(\mathbb{Z} \).
Knots with at most 12 crossings

$P(-5,3,-3)$ has a genus-one Siefert surface with Seifert matrix

$V = \begin{pmatrix} -1 & 1 \\ 2 & 0 \end{pmatrix}$. So $H_1 Y_{P(-5,3,-3)} = \mathbb{Z}_9$.

But $|\det(V)| = 2$, so we can make use of the following result of Trotter:

Trotter (1973)

Let V be a Seifert matrix with $|\det(V)|$ a prime or 1. Then any matrix which is S-equivalent to V is congruent to V over \mathbb{Z}.

V is congruent to $\begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix}$ or $\begin{pmatrix} -2 & 1 \\ 2 & 0 \end{pmatrix}$ only if there exists $n \in \mathbb{Z}$ with $-1 + 5n = 0$ or $-1 + 5n = -2$, respectively.
Knots with at most 12 crossings

Theorem
Let K be a genus one knot that has a diagram with at most 12 crossings. Then K admits no cosmetic crossings.
Knots with at most 12 crossings

Theorem
Let K be a genus one knot that has a diagram with at most 12 crossings. Then K admits no cosmetic crossings.

The End