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Abstract

We derive convergence rates for Tikhonov-type regularization with convex penalty
terms, where the regularization parameter is chosen according to Morozov’s discrep-
ancy principle and variational inequalities are used to generalize classical source and
nonlinearity conditions. Rates are obtained first with respect to the Bregman distance
and a Taylor-type distance and those results are combined to derive rates in norm and
the penalty term topology.

For the special case of the sparsity promoting weighted `p-norms as penalty terms
and for a searched-for solution, which is known to be sparse, the above results give
convergence rates of up to linear order.

Keywords. Inverse problems, Morozov’s discrepancy principle, Variational inequali-
ties, Convergence rates, Regularization, Sparsity.

AMS subject classification. 47J06; 65J20; 49N45.

1 Introduction

Many problems arising in phyiscal applications can be modeled mathematically as an oper-
ator equation

F
(
x
)

= y, (1)

where one is interested in finding a quantity x from observed data y. Examples include,
but are by no means limited to, medical and astronomical imaging, inverse scattering and
mathematical finance. Frequently the data y will be corrupted by noise, for instance, if
they were obtained through a measurement process which is subject to inaccuracy. We will
indicate the noisy version of the data by yδ. If the operator under consideration is ill-posed,
even small data errors may lead to large errors in the reconstruction.

If the data y, yδ belong to a normed space Y , as a first step towards making problem (1)
mathematically more tangible, one can consider instead the minimization of the least-squares
functional

J(x) =
∥∥F (x)− yδ∥∥2

Y
, (2)

and denote the noise level by δ, i.e.,
∥∥y − yδ∥∥ ≤ δ. This formulation allows for the definition

of a generalized solution even if the noisy data do not belong to the range of the operator,
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yδ /∈ rg(F ), but problem (2) remains ill-posed. One approach to overcome the aforemen-
tioned difficulties of ill-posed problems is to replace (2) by a family {Jα}α>0 of neighboring
well-posed (or at least stable) problems, which incorporate additional a-priori knowledge of
properties of the searched-for solution x† through a regularizing functional Ψ(x). For the
purpose of this paper we will only be concerned with convex Ψ. The approximate solutions
are taken to be the minimizers – denoted by xδα – of the resulting variational functional

Jα(x) =
∥∥F (x)− yδ∥∥2

Y
+ αΨ(x). (3)

The choice Ψ(x) = ‖x‖2X , for x belonging to some Hilbert space X, constitutes the classical
Tikhonov regularization. We refer the reader to [5] for further details in this respect.

Other choices which have received considerable attention in recent years, are total vari-
ation and sparsity promoting weighted `p-norms with respect to a given basis or frame
{φλ}λ∈Λ ⊂ X,

Ψw,p(x) =
∑
λ∈Λ

wλ |〈φλ, x〉|p , 0 < w0 ≤ wλ, 1 ≤ p ≤ 2. (4)

Sparse representations of solutions are of strong interest, for example, in signal compression
and astronomical imaging, where objects of interest like images are sparse, but their standard
reconstructions are not. Enforcing sparsity adds knowledge on the solution and therefore
improves the reconstruction.

The choice of the regularization parameter α in (3) turns out to be of crucial importance
for the quality of the resulting reconstructions. Many strategies have been proposed in the
literature and they typically lead to a somewhat different behaviour in terms of convergence
and, especially, rates of convergence in the chosen topology of the regularized solutions
xδα → x† as δ → 0, where x† denotes the searched-for solution to problem (1). For a-priori
parameter choice rules, where α = α(δ) depends on the noise level δ only, convergence rates
have been shown with respect to the Bregman distance in [4, 18, 19]. For the functionals Ψw,p

in (4) these results could even be used to obtain convergence rates in norm (cf. [7, 13, 17]).
When using Morozov’s Discrepancy Principle (henceforth, MDP), which belongs to the

class of a-posteriori parameter choice rules, i.e., the regularization parameter depends not
only on the noise level, but also on the noisy data yδ, we choose α = α(δ, yδ) such that for
some minimizer xδα of (3)

τ1δ ≤
∥∥∥F (xδα(δ,yδ)

)
− yδ

∥∥∥ ≤ τ2δ, 1 ≤ τ1 ≤ τ2

holds. This way of choosing the regularization parameter has been studied in great detail
in its present formulation [1, 3, 15] as well as in several related variations [5, 8, 12, 14, 21].

It has been shown in [5] that for linear operator equations and certain classes of reg-
ularization methods defined via spectral decomposition in Hilbert spaces the discrepancy
principle gives order optimal convergence rates. These results cover the classical Tikhonov
regularization mentioned above, but not variational regularization methods with general
convex penalty terms as in (3), and in particular not the functionals Ψp,w in (4) for p < 2.

For the special case of denoising, where the operator under consideration is the identity
in L2(Rd), with L1 or `1-penalty term, optimal order convergence rate results were obtained
in [12]. It was also shown that the resulting regularization method does not saturate, in
which case the discrepancy principle yields the same convergence rates as a-priori parameter
choice rules.

For Tikhonov-type regularization of linear operator equations with general convex pe-
nalty terms as in (3) and regularization parameter chosen according to MDP, Bonesky [3]
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showed convergence rate results with respect to the Bregman distance in reflexive Banach
spaces and his results were generalized to non-linear operators in [1] adding an additional
condition on the structure of the non-linearity in F .

Finally, the residual method was studied in the report [8]. It is closely related to the
discrepancy priniple and in r-convex Banach spaces, r ≥ 2, convergence rates in norm
were derived when using the penalty term Ψ(x) = ‖x‖rX /r. Moreover, for linear operators
additional convergence rates were provided under the assumption that the unknown solution
is sparse.

In the present paper we study non-linear operators in reflexive Banach spaces and obtain
convergence rates in norm of up to linear order with respect to the data error using source
and non-linearity conditions formulated through variational inequalities in combination with
Morozov’s discrepancy principle. We show that if the searched-for solution x† is sparse, then
a linear convergence rate can be obtained when penalizing with Ψw,1 as defined in (4).

The paper is structured as follows. In Section 2 we specify our setting. Then we derive the
main results about convergence rates both with respect to the Bregman distance and in norm
in Section 3. Sparse recovery in Hilbert spaces is studied in Section 4 as an example, which
will be found to be a special case of the framework described in Section 3, and we show that
convergence rates of up to linear order can be observed for non-linear operators using MDP
in combination with variational inequalities. Finally, Section 5 provides a discussion which
illustrates the link between the variational inequalities used in our analysis and classical
source and non-linearity conditions as well as previously considered formulations.

2 Preliminaries

Throughout this paper we assume the operator F : dom(F ) ⊂ X → Y , with 0 ∈ dom(F ),
to be weakly continuous between reflexive Banach spaces X and Y with dual spaces X∗

and Y ∗, respectively. However, Example 2.2 which we study in more detail in Section 4 is
formulated in Hilbert spaces. Moreover, we assume that the penalty term Ψ(x) fulfills the
following

Condition 2.1. Let Ψ : dom(Ψ) ⊂ X → R+, with 0 ∈ dom(Ψ), be a convex functional
such that

(i) Ψ(x) = 0 if and only if x = 0,

(ii) Ψ is weakly sequentially lower semicontinous w.r.t. the norm in X,

(iii) Ψ is weakly coercive, i.e. ‖xn‖ → ∞ =⇒ Ψ(xn)→∞.

We will repeatedly encounter the following example of penalty terms throughout this
paper.

Example 2.2. Let X be a Hilbert space and let Φ = {φλ}λ∈Λ ⊂ X be a frame for X, which
means that there exist constants A,B > 0 such that

A ‖x‖2 ≤
∑
λ∈Λ

|〈φλ, x〉|2 ≤ B ‖x‖2

holds for all x ∈ X. Then, for a fixed sequence w = {wλ}λ∈Λ with 0 < w0 ≤ wλ for all
λ ∈ Λ and for 1 ≤ p ≤ 2, we define

Ψp,w(x) =
∑
λ∈Λ

wλ |〈φλ, x〉|p , (5)

3



with
dom(Ψp,w) = {x ∈ X : Ψp,w(x) <∞}.

These penalty terms have been shown to be weakly sequentially lower semicontinuous
in [20, Section 3.3]. They also fulfill the remaining assumptions in Condition 2.1 as an
immediate consequence of the following Lemma.

Lemma 2.3. If Ψp,w(x) is as in Example 2.2 with given Φ = {φλ}λ∈Λ, w = {wλ}λ∈Λ, w0

and p, then

‖x‖p ≤ 1

w0

√
Ap

Ψp,w(x) (6)

holds for all x ∈ X, where A denotes the lower frame bound of Φ.

Proof. From the definition of the frame Φ, the continuous embedding of `p into `2 for
p ≤ 2 and w0 ≤ wλ we obtain

‖x‖ ≤ 1√
A

(∑
λ∈Λ

|〈φλ, x〉|2
)1/2

≤ 1√
A

(∑
λ∈Λ

|〈φλ, x〉|p
)1/p

≤ 1

w
1/p
0

√
A

(∑
λ∈Λ

wλ |〈φλ, x〉|p
)1/p

,

which gives the assertion when taken to the p-th power.

At this point we would like to fix some notational conventions.

Definition 2.4. We denote the set of all Ψ-minimizing solutions of F
(
x
)

= y by L, i.e.

L = {x† ∈ X| F
(
x†
)

= y and Ψ(x†) ≤ Ψ(x) ∀x s.t. F
(
x
)

= y}. (7)

Throughout this work we assume L 6= ∅ and write ψ† for the common value of the penalty
functional Ψ evaluated at any x† ∈ L, i.e.,

ψ† = Ψ(x†). (8)

Our regularization method consists in minimizing Tikhonov-type variational functionals
Jα(x) defined as

Jα(x) =
{ ∥∥F (x)− yδ

∥∥q + αΨ(x) if x ∈ D
+∞ otherwise,

(9)

where D := dom(F )∩dom(Ψ) and q > 0 is fixed. Hence, the regularized solutions are
chosen to be minimizers of these functionals,

xδα ∈Mα = arg min
x∈X

{Jα(x)}. (10)

In general, the minimizers of (9) will not be unique.

Now, let us come to the parameter choice rule of interest to us.

Definition 2.5. When using Morozov’s Discrepancy Principle (MDP) we choose the regu-
larization parameter α = α(δ, yδ) such that for some xδα ∈Mα

τ1δ ≤
∥∥F (xδα)− yδ∥∥ ≤ τ2δ (11)

holds with fixed constants 1 ≤ τ1 ≤ τ2.
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It has been shown in [1] that the following condition is sufficient for the existence of
α = α(δ, yδ) and xδα ∈Mα fulfilling (11).

Condition 2.6. Let τ1 > 1 and assume that yδ satisfies∥∥y − yδ∥∥ ≤ δ < τ2δ <
∥∥F (0)− yδ

∥∥ , (12)

and that there is no α > 0 with minimizers x1, x2 ∈Mα such that∥∥F (x1)− yδ
∥∥ < τ1δ ≤ τ2δ <

∥∥F (x2)− yδ
∥∥ .

For the purpose of this paper we will assume, henceforth, that α, xδα as in (11) can indeed
be found, which is certainly the case if Condition 2.6 holds true.

Remark 2.7. An immediate consequence of (11) which we will need repeatedly, is that∥∥F (xδα)− F (x†)∥∥ ≤ ∥∥F (xδα)− yδ∥∥+
∥∥yδ − y∥∥ ≤ (τ2 + 1)δ. (13)

�

The next Lemma can be found in [1], we give a proof here for the convenience of the
reader.

Lemma 2.8. If α is chosen according to MDP, then

Ψ(xδα) ≤ ψ†

holds for all x† ∈ L and xδα ∈Mα satisfying (11).

Proof. Using (11) and the minimizing property of xδα ∈Mα we see that

τ q1 δ
q + αΨ(xδα) ≤

∥∥F (xδα)− yδ∥∥q + αΨ(xδα) ≤ δq + αψ†.

For τ1 ≥ 1 we thus get

0 ≤ (τ q1 − 1)
δq

α
≤ ψ† −Ψ(xδα),

which completes the proof.

The above assumptions are sufficient to obtain weak convergence of the regularized solu-
tions xδα to the set L of Ψ-minimizing solutions. For the discrepancy principle in Definition
2.5 this was proven in [1], where it was also shown that for penalty terms fulfilling the fol-
lowing generalized Kadec-property the convergence even takes place in the norm topology.

Condition 2.9. (Kadec property) Let {xn} ⊂ X be such that xn ⇀ x̄ ∈ X and Ψ(xn) →
Ψ(x̄) <∞, then xn converges strongly to x̄, i.e., ‖xn − x̄‖ → 0.

Theorem 2.10. Let δn → 0 and the data yδn be such that
∥∥y − yδn∥∥ ≤ δn. If αn =

α(δn, y
δn) is chosen according to MDP and xn ∈ Mαn satisfies (11), then the sequence

{xn} converges weakly to L. If, moreover, Condition 2.9 holds, then {xn} converges to L
strongly.

For the proof we refer the reader to [1, Corollary 4.5 and Remark 4.6].
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3 Convergence rates

In order to formulate the variational inequalities as well as to measure and estimate conver-
gence rates, we will make use of the Bregman distance.

Definition 3.1. Let ∂Ψ(x) ⊂ X∗ denote the subdifferential of Ψ at x ∈ X. The generalized
Bregman distance with respect to Ψ of two elements x, z ∈ X is defined as

DΨ(x, z) = {Dξ
Ψ(x, z) : ξ ∈ ∂Ψ(z) 6= ∅},

where
Dξ

Ψ(x, z) = Ψ(x)−Ψ(z)− 〈ξ, x− z〉 (14)

denotes the Bregman distance with respect to Ψ and ξ ∈ ∂Ψ(z). We remark that from here
on 〈·, ·〉 denotes the dual pairing in X∗, X or Y ∗, Y and not the inner product on a Hilbert
space (unless noted otherwise).

Throughout the remainder of this paper we will assume that the operator F : X → Y is
Fréchet differentiable at arbitrary but fixed x† ∈ L. We start by introducing the following
notational conventions.

Definition 3.2. For x ∈ X,x† ∈ L, we denote the norm of the second order Taylor remain-
der by

T (x, x†) =
∥∥F (x)− F (x†)− F ′(x†)(x− x†)∥∥ , (15)

and call
DT (x, x†) =

∥∥F ′(x†)(x− x†)∥∥ (16)

the Taylor distance of x and x†.

In the recent work [2] Boţ and Hofmann formulated the conjecture, that convergence
rate results cannot be proven if the operator F fails to satisfy a structural condition of the
form

DT (x, x†) ≤ Cσ(
∥∥F (x)− F (x†)∥∥), (17)

where σ is a continuous, strictly increasing function through the origin and C > 0. We
now introduce variational inequalities which are generalizations of the standard source and
nonlinearity conditions discussed in Example 5.1 below, and which ultimately also fall into
the framework of (17). Similar inequalities were also used in the recent works [2, 6, 7, 11].

Condition 3.3. (Variational inequalities) Define

VL(ρ) =
{
x ∈ D

∣∣ Ψ(x) ≤ ψ† and
∥∥F (x)− y∥∥ ≤ ρ} (18)

and assume that for x† ∈ L there exist ξ ∈ ∂Ψ(x†), 0 < κ ≤ 1, ρ > 0 and βi, γi ≥ 0, i = 1, 2, 3,
such that

−〈ξ, x− x†〉 ≤ β1D
ξ
Ψ(x, x†) + β2DT (x, x†) + β3

∥∥F (x)− F (x†)∥∥κ (19)

T (x, x†) ≤ γ1D
ξ
Ψ(x, x†) + γ2DT (x, x†) + γ3

∥∥F (x)− F (x†)∥∥κ , (20)

holds for all x ∈ VL(ρ) and the constants βi, γi fulfill

β1 < 1, γ2 < 1 and
β2γ1

(1− β1)(1− γ2)
< 1. (21)
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Examples of applications where variational inequalities as in Condition 3.3 are fulfilled
are phase retrieval problems and inverse option pricing, which were studied in [9].

We now show that the regularized solutions xδα ∈Mα,yδ belong to the sets VL(ρ) for any
ρ > 0 once δ is small enough.

Lemma 3.4. If 0 < δ ≤ ρ/(τ2 +1), α = α(δ, yδ) is chosen according to MDP and xδα ∈Mα

fulfills (11), then xδα ∈ VL(ρ).

Proof. According to Lemma 2.8 and Remark 2.7 for α and xδα ∈ Mα fulfilling (11), we
know Ψ(xδα) ≤ ψ† and

∥∥F (xδα)− y∥∥ ≤ (τ2 + 1)δ ≤ ρ.

Here and below we denote by Bε(x
†) the open ball with radius ε centered at x†. Under

certain conditions it suffices for the variational inequalities (19) and (20) to only hold locally.

Lemma 3.5. Let the penalty term Ψ(x) fulfill Condition 2.9 and the set L of Ψ-minimizing
solutions consists of x† only. Then to every ε > 0 there exists δ∗ > 0 such that for all
0 < δ ≤ δ∗ and yδ with

∥∥y − yδ∥∥ ≤ δ it holds that

xδα ∈ Bε(x†) ∩ VL(ρ).

Here, α = α(δ, yδ) is chosen according to MDP and xδα ∈Mα satisfies (11).

Proof. Theorem 2.10 asserts that xδα → x† under the assumptions of the Lemma and
since xδα ∈ VL(ρ) according to Lemma 3.4 the existence of such δ∗ follows.

When using parameter choice rules other than the discrepancy principle, e.g. a-priori
rules, then Lemma 2.8 may no longer hold true and the only information concerning the
relation between the values of the penalty term at the regularized solutions xδα and the
Ψ-minimizing solutions x† we might have at hand is

lim
δ→0

Ψ(xδα) = Ψ(x†).

This is, however, not sufficient to ensure that xδα ∈ VL(ρ) as defined in (18). Therefore,
when working with other parameter choice rules, it might be necessary to consider larger
sets

Sα(σ) =
{
x ∈ D

∣∣ ∥∥F (x)− y∥∥q + αΨ(x) ≤ σ
}
, (22)

with σ > αψ† (see, for example, [2]), or

ṼL(ρ, η) =
{
x ∈ D

∣∣ Ψ(x) ≤ ψ† + η and
∥∥F (x)− F (x†)∥∥ ≤ ρ} (23)

for some ρ, η > 0 ([7]). We will see that these sets contain VL(ρ) in Lemma 5.3. But
even though this distinction is seemingly small, most of the terms in Condition 3.3 become
redundant when working with MDP:

Lemma 3.6. Condition 3.3 is equivalent to: Assume that for x† ∈ L there exist ξ ∈ ∂Ψ(x†),
0 < κ ≤ 1, ρ > 0 and β̃3, γ̃3 ≥ 0 such that

−〈ξ, x− x†〉 ≤ β̃3

∥∥F (x)− F (x†)∥∥κ (24)

T (x, x†) ≤ γ̃3

∥∥F (x)− F (x†)∥∥κ (25)

holds for all x ∈ VL(ρ).
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Proof. Note first, that if (24) and (25) hold for β̃3, γ̃3 ≥ 0, then Condition 3.3 is clearly
fulfilled with β1 = β2 = γ1 = γ2 = 0, β3 = β̃3 and γ3 = γ̃3.

To show the other implication, we write β′i = βi/(1 − β1) and γ′i = γi/(1 − γ2) for
i = 1, 2, 3. For x ∈ VL(ρ) we have using Ψ(x) ≤ ψ†

Dξ
Ψ

(
x, x†

)
= Ψ(x)−Ψ(x†)− 〈ξ, x− x†〉 ≤ −〈ξ, x− x†〉

and with 0 < κ ≤ 1 also∥∥F (x)− F (x†)∥∥ ≤ max(1, ρ)
∥∥F (x)− F (x†)∥∥κ .

Thus, if (19) holds, then from β1 < 1 and DT
(
x, x†

)
≤ T (x, x†) +

∥∥F (x)− F (x†)∥∥ we
obtain for x ∈ VL(ρ)

−〈ξ, x− x†〉 ≤ β′2DT
(
x, x†

)
+ β′3

∥∥F (x)− F (x†)∥∥κ
≤ β′2

(
T (x, x†) +

∥∥F (x)− F (x†)∥∥)+ β′3
∥∥F (x)− F (x†)∥∥κ .

≤ β′2T (x, x†) + (β′2 max(1, ρ) + β′3)
∥∥F (x)− F (x†)∥∥κ .

Consequently, if (20) holds and γ2 < 1, one gets

T (x, x†) ≤ −γ′1〈ξ, x− x†〉+ γ′2
∥∥F (x)− F (x†)∥∥+ γ′3

∥∥F (x)− F (x†)∥∥κ
≤ γ′1β′2T (x, x†) + ((γ′1β

′
2 + γ′2) max(1, ρ) + γ′1β

′
3 + γ′3)

∥∥F (x)− F (x†)∥∥κ
and due to (21) we find that (24) and (25) hold with

γ̃3 =
(γ′1β

′
2 + γ′2) max(1, ρ) + γ′1β

′
3 + γ′3

1− γ′1β′2
β̃3 = β′2γ̃3 + β′2 max(1, ρ) + β′3.

Lemma 3.7. If Condition 3.3 holds, there exist β̄3, γ̄3 ≥ 0, such that for all x ∈ VL(ρ) it
holds that

Dξ
Ψ

(
x, x†

)
≤ β̄3

∥∥F (x)− F (x†)∥∥κ (26)

DT
(
x, x†

)
≤ γ̄3

∥∥F (x)− F (x†)∥∥κ . (27)

Proof. We choose β̃3, γ̃3 as in Lemma 3.6 and obtain that for all x ∈ VL(ρ)

Dξ
Ψ

(
x, x†

)
≤ −〈ξ, x− x†〉 ≤ β̃3

∥∥F (x)− F (x†)∥∥κ (28)

As in the proof of Lemma 3.6 we use that for x ∈ VL(ρ) and 0 < κ ≤ 1∥∥F (x)− F (x†)∥∥ ≤ max(1, ρ)
∥∥F (x)− F (x†)∥∥κ ,

whence in combination with (25) if follows that

DT
(
x, x†

)
≤ T (x, x†) +

∥∥F (x)− F (x†)∥∥
≤ (γ̃3 + max(1, ρ))

∥∥F (x)− F (x†)∥∥κ .
8



Consequently, setting β̄3 = β̃3 and γ̄3 = γ̃3 + max(1, ρ) finishes the proof.

In [1] it has been proven that for the parameter choice rule MDP, the source condition
from Example 5.1 (i) and a nonlinearity condition as in (46) yield a convergence rate of
order O(δ) in the Bregman distance. We will now show that similar results still hold under
the more general Condition 3.3 with respect to the Bregman distance and also in the Taylor
distance DT (x, x†).

Theorem 3.8. Let Condition 3.3 hold for x† ∈ L, ξ ∈ ∂Ψ(x†). If α = α(δ, yδ) is chosen
according to MDP then for xδα ∈Mα satisfying (11), it holds that

Dξ
Ψ(xδα, x

†) = O(δκ) as δ → 0, (29)

DT (xδα, x
†) = O(δκ) as δ → 0. (30)

Proof. According to Lemma 3.4 we know that xδα ∈ VL(ρ) whenever δ is small enough.
Thus, if Condition 3.3 holds, we apply Lemma 3.7 to obtain β̄3 and γ̄3 such that

Dξ
Ψ

(
xδα, x

†) ≤ β̄3

∥∥F (xδα)− F (x†)∥∥κ ≤ β̄3τ
κ
2 δ

κ = O(δκ)

as δ → 0, where the last estimate stems from the definition of MDP in (11). Similarly,

DT
(
xδα, x

†) ≤ γ̄3

∥∥F (xδα)− F (x†)∥∥κ ≤ γ̄3τ
κ
2 δ

κ = O(δκ).

To prove convergence rates with respect to the topology induced by the penalty term we
introduce another variational inequality.

Condition 3.9. Let x† ∈ L, ξ ∈ ∂Ψ(x†) and assume there exist µi ≥ 0, r, ρ > 0, and
0 < κ ≤ 1 such that for all x ∈ VL(ρ) it holds

Ψ(x− x†)r ≤ µ1D
ξ
Ψ(x, x†) + µ2DT (x, x†) + µ3

∥∥F (x)− F (x†)∥∥κ . (31)

Remark 3.10. If we succeed in proving that the regularized solutions xδα converge strongly
to x† without the use of Condition 3.9, then it suffices to assume (31) for x ∈ Bε(x†)∩VL(ρ)
for arbitrarily small ε > 0. As shown in Lemma 3.5 this is possible if the penalty term Ψ
fulfills Condition 2.9 and L = {x†}. Additionally, by virtue of Theorem 3.8, convergence is
ensured if Condition 3.3 holds and the set{

z ∈ X
∣∣ Dξ

Ψ(z, x†) = DT (z, x†) = 0
}

consists of x† only. This would be the case, for example, if Ψ is strictly convex or if F ′(x†)
is injective. �

In Section 4 below, we will see that in the context of sparse recovery Condition 3.9 is sat-
isfied. When using MDP as the parameter choice rule the additional variational inequalitiy
(31) immediately yields convergence rates.

Theorem 3.11. If Conditions 3.3 and 3.9 hold for x† ∈ L and α = α(δ, yδ) is chosen
according to MDP, then

Ψ(xδα − x†) = O(δκ/r) as δ → 0 (32)

holds for any xδα ∈Mα satisfying (11).
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Proof. The assumptions of Theorem 3.8 hold for x = xδα and from (31), (29), (30), and
(11) we get

Ψ(xδα − x†)r ≤ µ1D
ξ
Ψ(xδα, x

†) + µ2DT (xδα, x
†) + µ3

∥∥F (xδα)− F (x†)∥∥κ = O(δκ)

as δ → 0, which is the desired convergence rate.

Remark 3.12. It is worthwhile noting, that if one has∥∥x− x†∥∥r
X
≤ µ1D

ξ
Ψ(x, x†) + µ2DT (x, x†) + µ3

∥∥F (x)− F (x†)∥∥κ . (33)

instead of (31), then in complete analogy to Theorem 3.11 one obtains a convergence rate
in norm, namely ∥∥xδα − x†∥∥X = O(δκ/r) as δ → 0. (34)

This would be the case, for example, if Ψ(x) is q-coercive for 2 ≤ q < ∞, i.e., for some
cq, ρ > 0, ∥∥x− x†∥∥q

X
≤ cqDΨ(x, x†) (35)

holds for all x ∈ X. It is well known, that the sparsity constraints Ψp,w(x) defined in (5)
fulfill (35) with q = 2, and for the optimal case κ = 1 we would obtain the classical rate∥∥xδα − x†∥∥X = O(δ1/2) as δ → 0. (36)

But – as we will see in Section 4 – even (31) with r = 1 holds true in this setting and
the resulting convergence result with respect to Ψp,w is stronger than convergence in norm,
which is why we prefer to work with formulation (31). Nevertheless, for different choices of
the penalty term Ψ it may be more suitable to use (33) instead. �

We now summarize our findings for the special case of linear operators F , where (20)
becomes a tautology and

DT (x, x†) =
∥∥F (x)− F (x†)∥∥ .

Without loss of generality we may thus assume β2 = γi = µ2 = 0 for i = 1, 2, 3.

Corollary 3.13. Assume that F is a linear operator and that for x† ∈ L there exist ξ ∈
∂Ψ(x†), 0 < κ ≤ 1 and ρ > 0 such that

−〈ξ, x− x†〉 ≤ β1D
ξ
Ψ(x, x†) + β3

∥∥F (x)− F (x†)∥∥κ
holds for all x ∈ VL(ρ) with 0 ≤ β1 < 1 and β3 ≥ 0. Then, if α = α(δ, yδ) is chosen
according to MDP and xδα ∈Mα satisfies (11), we have

Dξ
Ψ(xδα, x

†) = O(δκ) and DT (xδα, x
†) = O(δκ),

as δ → 0. If, furthermore, there exist µ1, µ3 ≥ 0 and r > 0 such that either

Ψ(x− x†)r ≤ µ1D
ξ
Ψ(x, x†) + µ3

∥∥F (x)− F (x†)∥∥κ ,
or ∥∥x− x†∥∥r ≤ µ1D

ξ
Ψ(x, x†) + µ3

∥∥F (x)− F (x†)∥∥κ ,
holds for all x ∈ VL(ρ), then

Ψ(xδα − x†) = O(δκ/r) or
∥∥xδα − x†∥∥ = O(δκ/r),

as δ → 0, respectively.
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Proof. Since Conditions 3.3 and 3.9 are satisfied, we obtain the respective results from
Theorems 3.8 and 3.11 together with Remark 3.12.

Remark 3.14. If the linear operator F is injective or if Ψ is strictly convex, then according
to Remark 3.10 it would suffice for (31) to hold only locally, i.e., for x ∈ Bε(x†) ∩ VL(ρ).
Moreover, the set L of Ψ-minimizing solutions is known to be single-valued under these
assumptions and therefore, if Ψ satisfies Condition 2.9, then Lemma 3.5 asserts that also
(19) and (20) are only required to hold locally. �

4 Sparse recovery

As a prominent case study, we will show now that the convergence rate from (36) for the
sparsity promoting penalty terms Ψp,w defined in (5) can be improved significantly when
including the a-priori information that the Ψp,w-minimizing solution x† is also sparse. To
this end we show that a variational inequality as in Condition 3.9 holds true for this method.

Condition 4.1. Let X be a Hilbert space and {φλ}λ∈Λ be a fixed frame for X (cf. Example
2.2). For elements x ∈ X we use the shorthand notation

xλ = 〈φλ, x〉.

Throughout this section we assume that x† ∈ L is sparse w.r.t. {φλ}λ∈Λ, i.e., that only

finitely many x†λ are nonzero. For any ξ ∈ ∂Ψ(x†) ⊂ X∗ = X the sequence {ξλ}λ∈Λ belongs
to `2(Λ) and thus the set

J = {λ ∈ Λ | x†λ 6= 0 ∨ |ξλ| ≥ w0} (37)

is also finite. We denote the subspace spanned by elements with indices in J by

U = span {φλ | λ ∈ J},

and the projections of X onto U and U⊥ by π and π⊥, respectively.
Moreover, we assume that F ′(x†)|U is injective, i.e., for all x, z ∈ X from F ′(x†)(x−z) =

π⊥(x−z) = 0 it follows that x = z. Note that F ′(x†)|U is clearly injective, if F ′(x†) satisfies
the so-called FBI property (see, e.g., [13] and the references therein for further information).

A variational inequality of type (31) indeed holds in the sparse recovery case which will
allow us to derive convergence rates whenever Condion 3.3 is satisfied. This is shown in
Theorem 4.4 and Corollary 4.5 below. The proof is based on techniques from [7] and uses
the following technical Lemma.

Lemma 4.2. If condition 4.1 is satisfied, then there exists c > 0 such that for any x ∈
X, ξ ∈ ∂Ψp,w(x†) and λ /∈ J

wλ |xλ|p ≤ c (wλ |xλ|p − ξλxλ) (38)

holds.

Proof. We first consider the case p > 1, then the unique element in the subgradient
ξ ∈ ∂Ψp,w(x†),

ξ =
∑
λ∈Λ

pwλ sign(〈φλ, x†〉)
∣∣〈φλ, x†〉∣∣p−1

φλ,
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satisfies ξλ = 0 whenever x†λ = 0, which in turn holds for all λ /∈ J , so that (38) clearly
holds for all c ≥ 1.

On the other hand, for p = 1 we define

m = max
λ/∈J

|ξλ| < w0.

Here the maximum is attained since ξ ∈ X∗ = X and thus the sequence {ξλ}λ∈Λ belongs to
`2(Λ). Since 0 ≤ |ξλ| ≤ m < w0 ≤ wλ the choice c = 2w0/(w0 −m) yields

wλ
c
|xλ| = wλ |xλ| −

wλ
w0

w0 +m

2
|xλ|

≤ wλ |xλ| −m |xλ| ≤ wλ |xλ| − ξλxλ,

and (38) follows.

We now show that a variational inequality (31) holds in the sparse recovery case.

Lemma 4.3. If condition 4.1 is satisfied, then there exist µ1, µ2 > 0 such that for all x ∈ X

Ψp,w(x− x†) ≤ µ1D
ξ
Ψp,w

(x, x†) + µ2DT (x, x†)p, 1 ≤ p ≤ 2. (39)

holds.

Proof. In order to estimate the difference between x and x† with respect to the penalty
term, we use the splitting

Ψp,w(x− x†) =
∑
λ∈J

wλ

∣∣∣xλ − x†λ∣∣∣p +
∑
λ/∈J

wλ

∣∣∣xλ − x†λ∣∣∣p , (40)

and write
cw = sup

λ∈J
{wλ},

which is a finite number because the set J , defined in (37), is finite. Using the equivalence
of norms on finite dimensional spaces, we find a constant cp such that∑

λ∈J

wλ

∣∣∣xλ − x†λ∣∣∣p ≤ cw ∥∥∥{xλ − x†λ}λ∈J∥∥∥p
`p(J)

≤ cwcp
∥∥∥{xλ − x†λ}λ∈J∥∥∥p

`2(J)

= cwcp
∥∥π(x− x†)

∥∥p
Due to the injectivity of F ′(x†) on U , the boundedness of F ′(x†) and the inequality (a+b)p ≤
2(ap + bp) for a, b ≥ 0 and p ≥ 1, we get the following estimate.∥∥π(x− x†)

∥∥p ≤ c′ ∥∥F ′(x†)π(x− x†)
∥∥p

≤ 2c′ (
∥∥F ′(x†)(x− x†)∥∥p +

∥∥F ′(x†)∥∥p ∥∥π⊥x∥∥p).
From the well known inequality ‖.‖`2 ≤ ‖.‖`p for 1 ≤ p ≤ 2, Lemma 4.2 and x†λ = 0 for all
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λ /∈ J , it follows that

∥∥π⊥x∥∥p =
(∑
λ/∈J

|xλ|2
)p/2

≤
∑
λ/∈J

wλ
w0
|xλ|p

=
c

w0

∑
λ/∈J

wλ |xλ|p − wλ
∣∣∣x†λ∣∣∣p − ξλ(xλ − x†λ)

≤ c

w0
Dξ

Ψp,w
(x, x†),

where the last inequality holds because all remaining summands for λ ∈ J are Bregman
distances Dξλ

wλ |.|(xλ, x
†
λ), where ξλ ∈ ∂(wλ |.|)(x†λ), and hence nonnegative.

To obtain the remaining estimates for terms corresponding to λ /∈ J in (40), we again

use Lemma 4.2 and x†λ = 0 for all λ /∈ J .∑
λ/∈J

wλ

∣∣∣xλ − x†λ∣∣∣p ≤ c∑
λ/∈J

wλ |xλ|p − wλ
∣∣∣x†λ∣∣∣p − ξλ(xλ − x†λ)

≤ c Dξ
Ψp,w

(x, x†).

Finally, collecting the above inequalities we find that

Ψp,w(x− x†) =
∑
λ/∈J

wλ

∣∣∣xλ − x†λ∣∣∣p +
∑
λ∈J

wλ

∣∣∣xλ − x†λ∣∣∣p
≤ µ1 D

ξ
Ψp,w

(x, x†) + µ2

∥∥F ′(x†)(x− x†)∥∥p
holds for all x ∈ X, where

µ1 = 2c′cwcp
∥∥F ′(x†)∥∥p c

w0
+ c and µ2 = 2c′.

Theorem 4.4. If Condition 4.1 is satisfied, then for ε <
∥∥F ′(x†)∥∥−1

and x ∈ Bε(x†) it
holds that

Ψp,w(x− x†) ≤ µ1D
ξ
Ψp,w

(x, x†) + µ2DT (x, x†), 1 ≤ p ≤ 2, (41)

with µ1, µ2 as in Lemma 4.3. Moreover, if additionally Condition 3.3 holds for arbitrary
ρ > 0, then there exist µ1, µ2 > 0 such that (41) holds for all x ∈ VL(ρ) as defined in (18).

Proof. The assumptions of Lemma 4.3 are fulfilled and using (39) and that DT (x, x†) ≤ 1
whenever x ∈ Bε(x†), we find that

Ψp,w(x− x†) ≤ µ1 D
ξ
Ψp,w

(x, x†) + µ2DT (x, x†)p

≤ µ1D
ξ
Ψp,w

(x, x†) + µ2DT (x, x†).

holds for all x ∈ Bε(x†). If, on the other hand, Condition 3.3 holds and x ∈ VL(ρ), then
according to Lemma 3.7

DT (x, x†) ≤ γ̄3

∥∥F (x)− F (x†)∥∥κ ≤ γ̄3ρ
κ =: C
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Using (39) we thus obtain

Ψp,w(x− x†) ≤ µ1 D
ξ
Ψp,w

(x, x†) + µ2DT (x, x†)p

≤ µ1D
ξ
Ψp,w

(x, x†) + µ2 max(1, Cp)DT (x, x†).

As a corollary we obtain the convergence rate result.

Corollary 4.5. If x† ∈ L satisfies Condition 3.3 and 4.1 and α = α(δ, yδ) is chosen
according to MDP, then for xδα ∈Mα satisfying (11) we obtain a convergence rate

Ψp,w(xδα − x†) = O(δκ) as δ → 0. (42)

Proof. According to Theorem 4.4 we find that Condition 3.9 is satisfied with r = 1 and
thus Theorem 3.11 is applicable and provides the result.

If we take X to be the sequence space `2 with the canonical basis, then the penalty terms
Ψp,w are powers of the weighted `p-norms, namely

Ψp,w(x) = ‖x‖pp,w
and therefore (42) corresponds to a convergence rate∥∥xδα − x†∥∥p,w = O(δκ/p)

and if κ = 1 we obtain linear convergence speed for `1-regularization (compare [7, 8]).

5 Relation of variational inequalities to different types
of source and nonlinearity conditions

Variational formulations of source and nonlinearity conditions have been used earlier in
order to obtain convergence rate results. In this Section, we would like to draw a connection
between inequalities (19) and (20) in Condition 3.3 and classical source and nonlinearity
conditions. Variational inequalities can be seen as a generalization of the latter as the
following examples illustrate.

Example 5.1. (i) If ξ ∈ ∂Ψ(x†) fulfills the classical source condition

ξ = F ′(x†)∗w, (43)

with w ∈ Y ∗, then it follows that

− 〈ξ, x− x†〉 ≤
∣∣〈w,F ′(x†)(x− x†)〉∣∣ ≤ ‖w‖Y ∗DT (x, x†), (44)

and thus (19) holds with β2 = ‖w‖Y ∗, and β1 = β3 = 0. Note, that the presence of the
term DT (x, x†) in (19) allows us to express this classical source condition through only
the first variational inequality. Omitting this term and using an alternative formulation

− 〈ξ, x− x†〉 ≤ β1D
ξ
Ψ(x, x†) + β3

∥∥F (x)− F (x†)∥∥κ , (45)

which has been considered, e.g., in [2, 20], one always needs to also employ some
sort of structural nonlinearity condition to include this standard case in the setting.
Nevertheless, (45) combined with a nonlinearity condition (such as (20)) is equivalent
to Condition 3.3 in the sense of Lemma 3.6.
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(ii) One of the first structural assumptions regarding nonlinearity (see, e.g., [5, 16]), was
that F be Fréchet differentiable between Hilbert spaces X,Y and that the derivative
be Lipschitz continuous, i.e., for some ρ > 0 and all x, z ∈ X it holds

‖F ′(x)− F ′(z)‖ ≤ c ‖x− z‖ .

Under this assumption one can show that for classical Tikhonov regularization, where
Ψ(x) = ‖x‖2, the following estimate holds

T (x, x†) ≤ c

2

∥∥x− x†∥∥2
=
c

2
Dξ

Ψ(x, x†),

which is (20) with γ1 = c/2 and γ2 = γ3 = 0. In [19] the variational inequality

T (x, x†) ≤ cDξ
Ψ(x, x†). (46)

has been used as the nonlinearity condition for regularization with more general, convex
penalty terms.

(iii) In [10] an operator F is defined to be nonlinear of degree (n1, n2, n3) locally near x†,
with n1, n2 ∈ [0, 1], n3 ∈ [0, 2], if for some c, ρ > 0 and all x ∈ VL(ρ):

T (x, x†) ≤ cDT (x, x†)n1
∥∥F (x)− F (x†)∥∥n2

∥∥x− x†∥∥n3
.

Taking into account the problem under consideration in [10], where X,Y are Hilbert

spaces and Ψ = ‖.‖2, this definition may be generalized within our framework to

T (x, x†) ≤ cDT (x, x†)n1
∥∥F (x)− F (x†)∥∥n2

Dξ
Ψ(x, x†)n3 .

Applying Young’s inequality twice to that last inequality we find that – whenever
n1 + n3 < 1 – there exist constants γi such that (20) holds for x sufficiently close to
x† with

κ = min

(
1,

n2

1− n1 − n3

)
.

Note that if one considers examples (i) and (ii) together for β1 = γ2 = 0 (cf. Lemma
3.6), then (21) becomes the well-known smallness condition

c

2
‖w‖Y ∗ < 1.

Remark 5.2. Regarding the third variational inequality (31) in Condition 3.9 (or more
precisely (33)), it is related to Assumption 1 in [7], where the following formulation was
considered: For x† ∈ L assume that there exist ρ, η, r, c1, c2 > 0 such that

Ψ(x)−Ψ(x†) ≥ c1
∥∥x− x†∥∥r − c2 ∥∥F (x)− F (x†)∥∥ , (47)

holds for all x ∈ ṼL(ρ, η) as defined in (23).
If α is chosen according to MDP we restrict our attention to the sets VL(ρ) in (18) (or

even subsets thereof, cf. Lemma 3.5), where (47) is a stronger assumption than (31) because

Ψ(x)−Ψ(x†) ≤ 0 ≤ Dξ
Ψ(x, x†) (48)

holds for x ∈ VL(ρ).
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In [7] also the variational inequalities in Condition 3.3 are formulated with Dξ
Ψ(x, x†)

replaced by Ψ(x)−Ψ(x†), which imply (19) and (20) with β1 = 0 and γ1 = 0, respectively,
due to (48). Therefore Theorems 3.8 and 3.11 remain applicable and we obtain the same
convergence rates.

Furthermore, in the special case γ1 = µ1 = 0 assumption (19) can be dropped entirely as
it is only needed to estimate the Bregman distance which no longer appears in our estimates.

If, on the other hand, a stronger nonlinearity condition

T (x, x†) ≤ γ1

(
Ψ(x)−Ψ(x†)

)
+ γ2DT (x, x†) + γ3

∥∥F (x)− F (x†)∥∥ (49)

is satisfied locally for x ∈ Bε(x†) ⊂ D (assuming D contains such a ball) and the penalty
term Ψ under consideration is differentiable, then (19) necessarily holds true. As argued in
[7] this can be seen by fixing z 6= 0 and applying (49) to zt = x† + tz (which belongs to
Bε(x

†) for t > 0 small enough) and dividing by t, which yields

1

t

∥∥F (x† + tz
)
− F

(
x†
)
− F ′(x†)(tz)

∥∥
≤ γ1

Ψ(x† + tz)−Ψ(x†)

t
+ γ2

∥∥F ′(x†)z∥∥+ γ3
1

t

∥∥F (x† + tz
)
− F

(
x†
)∥∥ .

Taking the limit t→ 0+ and choosing z = x−x† for x ∈ X\{x†} (note, that if x = x†, then
(19) is satisfied trivially) we obtain

0 ≤ γ1〈Ψ′(x†), x− x†〉+ (γ2 + γ3)
∥∥F ′(x†)(x− x†)∥∥ ,

which is a special case of (19). This is to say that assumption (49) is strong enough locally to
ensure that for differentiable penalty terms a variational source condition (19) holds globally
as well. �

Let us now establish a relation between the sets VL(ρ), ṼL(ρ, η) and Sα(σ) as defined in
(18), (23) and (22), respectively, for different values of ρ, α and σ.

Lemma 5.3. If σ > αψ†, then there exists ρ > 0 such that

VL(ρ) ⊂ Sα(σ).

Moreover, VL(ρ) ⊂ ṼL(ρ, η) holds for all ρ, η > 0.

Proof. If σ > αψ† and x ∈ VL(ρ) for 0 < ρ ≤ (σ − αψ†)1/q, then∥∥F (x)− y∥∥q + αΨ(x) ≤ ρq + αψ† ≤ σ,

so that x ∈ Sα(σ). The inclusion VL(ρ) ⊂ ṼL(ρ, η) is an immediate consequence of the
definitions of these sets.

However, the sets VL(ρ) do in general not contain any sublevelset Sα(σ) for a combi-
nation of parameters α and σ such that σ > αψ†. This can be seen from the following
counterexample. It is in this sense that the sets VL(ρ) are smaller than the sets Sα(σ).

Lemma 5.4. Let F be a linear operator and let the penalty term Ψ(x) be p-homogeneous
(with p > 0), i.e.,

Ψ(tx) = tpΨ(x), ∀t ∈ R+
0 , x ∈ X.

If α,ψ† > 0 and σ > αψ†, then there exists c̄ > 1 such that for all x† ∈ L it holds that
c̄x† ∈ Sα(ρ), but there is no ρ ≥ 0 such that c̄x† ∈ VL(ρ).
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Proof. According to our assumption σ > αψ† > 0, it is

c =
σ

αψ†
> 1

and we may choose d > 1 such that dp ∈ (1, c). Consequently, in case y 6= 0

ε =
(σ − dpαψ†)1/q

‖y‖
>

(σ − cαψ†)1/q

‖y‖
= 0,

so that c̄ = min(d, 1 + ε) > 1. Due to our choices it follows for arbitrary x† ∈ L that∥∥F (c̄x†)− y∥∥q + αΨ(c̄x†) =
∥∥c̄F (x†)− y∥∥q + c̄pαΨ(x†)

= (c̄− 1)q ‖y‖q + c̄pαψ†

≤ εq ‖y‖q + dpαψ† ≤ σ,

and c̄x† ∈ Sα(σ). Note, that in case y = 0 we may simple choose c̄ = d to obtain∥∥F (c̄x†)− y∥∥q + αΨ(c̄x†) = c̄pαψ† ≤ σ.

However, in both of the above cases c̄ > 1 and thus

Ψ(c̄x†) = c̄pψ† > ψ†

which shows that c̄x† /∈ VL(ρ) for any ρ > 0.

Conclusion

We have studied a Tikhonov-type regularization method for ill-posed, possibly non-linear
operator equations with general convex penalty terms, where the regularization parameter
is chosen according to Morozov’s discrepancy principle.

Under the assumption that the searched-for solution x† satisfies a generalized source
condition and the operator under consideration satisfies a generalized nonlinearity condition,
which were formulated as variational inequalities, we found that the difference between the
regularized solution obtained through our method and x† when measured in the Bregman
distance or a Taylor-type distance, goes to zero at a rate of δκ as δ → 0, where the parameter
κ ∈ (0, 1] allows for a relaxation of the classical source and non-linearity conditions, which
are related to the case κ = 1.

Using another variational inequality (compare to (31)), which links the aforementioned
Bregman- and Taylor distances to the Banach space norm or the penalty term topology, we
could use the rates established for these distances to obtain a convergence rate O(δκ/r) in
norm. Here the parameter r stems from the third variational inequality and even though
such a constant r may be found from properties of the underlying (Banach) space and
the penalty functional alone, it may be improved by additional knowledge about the true
solution x†.

This behaviour could be observed when analyzing the situation of a solution which is
known to be sparse in a Hilbert space setting, where the penalty term was chosen to be
Ψp,w with 1 ≤ p ≤ 2 as defined in (5). A rate with r = 2 can always be achieved for these
choices, but using the sparsity assumption the third variational inequality could be shown
to hold even for r = p, which yields convergence rates of up to linear order, O(δ), in the
limiting case κ = p = 1.
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