1. Let

$$
A=\left(\begin{array}{rrr}
1 & -3 & -5 \\
1 & 1 & -2 \\
1 & -3 & 1 \\
1 & 1 & 4
\end{array}\right), \quad \vec{b}=\left(\begin{array}{r}
-6 \\
1 \\
1 \\
6
\end{array}\right)
$$

If the Gram-Schmidt process is applied to determine an orthonormal basis for $C(A)$ and a QR factorization of A, then, after the first two orthonormal vectors \vec{q}_{1} and \vec{q}_{2} are computed, we have

$$
Q=\left(\begin{array}{rrr}
\frac{1}{2} & -\frac{1}{2} & - \\
\frac{1}{2} & \frac{1}{2} & - \\
\frac{1}{2} & -\frac{1}{2} & - \\
\frac{1}{2} & \frac{1}{2} & -
\end{array}\right), \quad R=\left(\begin{array}{rrr}
2 & -2 & - \\
0 & 4 & - \\
0 & 0 & -
\end{array}\right)
$$

(a) Finish the process. Determine \vec{q}_{3} and fill in the third columns of Q and R. [6 points]
(b) Use the $Q R$ factorization to find the least squares solution of $A \vec{x}=\vec{b}$. [4 points]

