1. Let

$$
A=\left(\begin{array}{ll}
1 & 0 \\
1 & 3 \\
1 & 6
\end{array}\right), \quad \vec{b}=\left(\begin{array}{l}
1 \\
4 \\
5
\end{array}\right)
$$

(a) Project \vec{b} onto the $C(A)$ by solving $A^{T} A \vec{x}=A^{T} \vec{b}$ and $\vec{p}=A \vec{x}$. Show all steps. [5 points]
(b) Write down an analytical expression for the projection matrix P. (Note: you do not have to numerically evaluate/solve for the matrix.) [1 point]
(c) Find the error vector $\vec{e}=\vec{b}-\vec{p}$ and compute its dot product with the columns of A. What does this tell you about the relationship between \vec{e} and the columns of A ? [4 points].

