1. Let

$$
A=\left[\begin{array}{cccc}
1 & 2 & -1 & 1 \\
2 & 4 & -3 & 0 \\
1 & 2 & 1 & 5
\end{array}\right]
$$

(a) Use elimination to find the reduced row echelon matrix R. Identify the pivot columns and free columns. [3 points]
(b) How many special solutions does $A \vec{x}=\overrightarrow{0}$ have? Write the nullspace $N(A)$ as the span of the special solution(s) [2 points]
(c) Write the column space, $C(A)$, of A as the span of two vectors. [1 point]
2. Suppose an m by n matrix has r pivots. Answer the following questions: [1 point each]
(a) The number of special solutions is \qquad
(b) The nullspace contains only $\vec{x}=\overrightarrow{0}$ when $r=$ \qquad
(c) The column space is all of \mathbb{R}^{m} when $r=$ \qquad
3. Construct a matrix A such that its nullspace contains all multiples of $(2,-1,3,1)$. [1 point].

