1. Compute $A^{-1} \in \mathbb{R}^{3 \times 3}$ using elimination. Show your work (write down the row operations used in each step). [4 points]

$$
A=\left(\begin{array}{lll}
1 & 2 & 0 \\
1 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

2. Answer the following True/False questions about $M, N, P \in \mathbb{R}^{n \times n}$ by circling the correct answer. When the answer is false, mention why! [1 point each]
(a) It is always true that $(M P)^{2}=M^{2} P^{2}$.

T $\quad \mathbf{F}$
(b) Consider the block matrices $(M \mid N) \in \mathbb{R}^{n \times 2 n}$ and $\binom{M}{P} \in \mathbb{R}^{2 n \times n}$. Then, $(M \mid N)\binom{M}{P}=M^{2}+N P$.

T $\quad \mathbf{F}$
(c) $(M P)^{-1}$ can still exist if row 2 of M is three times row 1 of M.

T
F
3. Use elimination to compute the $L D U$ factorization of $A \in \mathbb{R}^{2 \times 2}$ below. That is, find a lower triangular matrix $L \in \mathbb{R}^{2 \times 2}$, a diagonal matrix $D \in \mathbb{R}^{2 \times 2}$, and an upper triangular matrix $U \in \mathbb{R}^{2 \times 2}$ with ones on the diagonal, such that $A=L D U$. Show all your steps. [3 points]

$$
A=\left(\begin{array}{cc}
3 & 1 \\
-1 & -2
\end{array}\right)
$$

