1. Compute $A^{-1} \in \mathbb{R}^{3 \times 3}$ using elimination. Show your work (write down the row operations used in each step). [4 points]

$$A = \left(\begin{array}{rrrr} 1 & 2 & 0\\ 1 & 1 & 1\\ 0 & 0 & 1 \end{array}\right).$$

- 2. Answer the following True/False questions about $M, N, P \in \mathbb{R}^{n \times n}$ by circling the correct answer. When the answer is false, mention why! [1 point each]
 - (a) It is always true that $(MP)^2 = M^2 P^2$. **T F**

(b) Consider the block matrices
$$(M \mid N) \in \mathbb{R}^{n \times 2n}$$
 and $\begin{pmatrix} M \\ P \end{pmatrix} \in \mathbb{R}^{2n \times n}$.
Then, $(M \mid N) \begin{pmatrix} M \\ P \end{pmatrix} = M^2 + NP$. **T**

(c) $(MP)^{-1}$ can still exist if row 2 of M is three times row 1 of M. **T F**

3. Use elimination to compute the LDU factorization of $A \in \mathbb{R}^{2 \times 2}$ below. That is, find a lower triangular matrix $L \in \mathbb{R}^{2 \times 2}$, a diagonal matrix $D \in \mathbb{R}^{2 \times 2}$, and an upper triangular matrix $U \in \mathbb{R}^{2 \times 2}$ with ones on the diagonal, such that A = LDU. Show all your steps. [3 points]

$$A = \left(\begin{array}{cc} 3 & 1\\ -1 & -2 \end{array}\right).$$