1. Consider the following set of equations:

$$
\begin{aligned}
2 x+3 y & =-1 \\
-x+y & =3
\end{aligned}
$$

(a) Draw the row picture corresponding to this set of equations. [1 point]

(b) Using part (a), write $(-1,3)$ as a linear combination of $(2,-1)$ and $(3,1)$. [1 point]
2. Find a combination $a \vec{v}_{1}+b \vec{v}_{2}+c \vec{v}_{3}$ that gives the zero vector: [2 points]

$$
\vec{v}_{1}=\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right] \quad \vec{v}_{2}=\left[\begin{array}{c}
2 \\
-3 \\
1
\end{array}\right] \quad \vec{v}_{3}=\left[\begin{array}{c}
3 \\
-3 \\
0
\end{array}\right]
$$

(Circle the correct choices)
These vectors are:
The three vectors lie on
independent
line plane
dependent
plane $\quad 3 \mathrm{D}$ space
3. Consider the two equations $-y=2 x+1$ and $-2 y=4 x-4$.
(a) Draw the column picture corresponding to this set of equations. [1 point]

(b) Using your graph from part (a), explain why the following matrix-vector equation does not have a solution. [1 point]

$$
\left(\begin{array}{ll}
-2 & -1 \\
-4 & -2
\end{array}\right) \vec{x}=\binom{1}{-4}
$$

4. Which number p makes this system singular and which right hand side q gives infinitely many solutions? Find the solution that has $x_{3}=1$. Show all steps used to arrive at your answer. [4 points]

$$
\begin{array}{r}
x_{1}+2 x_{2}-3 x_{3}=2 \\
2 x_{1}+6 x_{2}+x_{3}=7 \\
2 x_{2}+p x_{3}=q .
\end{array}
$$

