1. For any unit vectors \vec{a} and \vec{b} , find the dot product of $(\vec{a} + \sqrt{3} \ \vec{b})$ and $(\vec{a} - \sqrt{3} \ \vec{b})$. Show all your work. [2 points]

2. For each of the following, answer **True** or **False**. Provide a brief justification for your answer. [2 points each].

(a) If \vec{p} is perpendicular to \vec{q} and \vec{r} , then \vec{p} is perpendicular to $5 \vec{q} - \frac{1}{2} \vec{r}$.

(b) Suppose that $\|\vec{u}\| = 3$ and $\|\vec{v}\| = 2$. The minimum possible value of $\|\vec{u} - \vec{v}\| + \vec{u} \cdot \vec{v}$ is achieved when \vec{u} is perpendicular to \vec{v} .

3. Find unit vectors \vec{a} and \vec{b} that are perpendicular to (2, -1, 0) and to each other. Show all your work. [3 points]

4. Fill in the blank below. Provide a brief justification for your answer. [1 point] All possible linear combinations of $\vec{a} = (1, 1, 1)$, $\vec{b} = (1, 2, -1)$ and $\vec{c} = (0, 1, -2)$ fill

⁽your answer should be one of the following: a line, a plane, or three-dimensional space)