1. For any unit vectors \vec{a} and \vec{b}, find the dot product of $(\vec{a}+\sqrt{3} \vec{b})$ and $(\vec{a}-\sqrt{3} \vec{b})$. Show all your work. [2 points]
2. For each of the following, answer True or False. Provide a brief justification for your answer. [2 points each].
(a) If \vec{p} is perpendicular to \vec{q} and \vec{r}, then \vec{p} is perpendicular to $5 \vec{q}-\frac{1}{2} \vec{r}$.
(b) Suppose that $\|\vec{u}\|=3$ and $\|\vec{v}\|=2$. The minimum possible value of $\|\vec{u}-\vec{v}\|+\vec{u} \cdot \vec{v}$ is achieved when \vec{u} is perpendicular to \vec{v}.
3. Find unit vectors \vec{a} and \vec{b} that are perpendicular to $(2,-1,0)$ and to each other. Show all your work. [3 points]
4. Fill in the blank below. Provide a brief justification for your answer. [1 point]

All possible linear combinations of $\vec{a}=(1,1,1), \vec{b}=(1,2,-1)$ and $\vec{c}=(0,1,-2)$ fill
(your answer should be one of the following: a line, a plane, or three-dimensional space)

