Week 15 - Worksheet - MTH 305 (Spring 2017)

(1) Find the antiderivative $F(x)$ of the function $f(x)=e^{x}+x-1$ that satisfies $F(0)=6$.
(2) Find the antiderivative $F(x)$ of the function $f(x)=1 / x^{2}$ that satisfies $F(-1)=1$ and $F(2)=0$.
(3) Keeping a constant acceleration, a motorcycle can go from 40 miles per hour to 60 miles per hour in 5 seconds.
(a) What is the motorcycle's acceleration in miles per second squared?
(b) What is the distance traveled by the motorcycle during these 5 seconds?
(4) In the exercises below, compute the definite integral $\int_{a}^{b} f(x) d x$.
(a) $f(x)=6 x^{5}, a=-1, b=1$
(b) $f(x)=x^{3}\left(2 x^{2}-1\right), a=0, b=1$
(c) $f(x)=(x+2)\left(3-x^{2}\right), a=0, b=1$
(d) $f(x)=1 / x^{3}+1 / x^{4}, a=1, b=2$
(e) $f(x)=\sqrt{x}\left(x^{3}+1\right), a=0, b=1$
(f) $f(x)=e^{x+3}, a=-2, b=0$
(g) $f(x)=|x|, a=-2, b=5$
(h) $f(x)=|3 x-1|, a=-1, b=0$
(i) $f(x)=\left\{\begin{array}{lll}x^{3} & \text { if } & x \leq 1 \\ x^{2} & \text { if } & x>1\end{array}, a=0, b=2\right.$
(5) Let $f(x)=x^{3}$ and consider the function $g(x)=\int_{1}^{x} f(t) d t$.
(a) Find a formula for $g(x)$.
(b) Evaluate $g^{\prime}(x)$.
(c) Compute $g(1)$.
(d) Fill in the blanks: $g(x)$ is the \qquad of $f(x)=x^{3}$ that takes the value \qquad at $x=$ \qquad
(6) Let $g_{1}(x)=\int_{0}^{x} \frac{1}{2 t^{2}+e^{t}} d t$. Then
$g_{1}(x)$ is the \qquad of $f_{1}(x)=$ \qquad that takes the value \qquad at $x=$ \qquad
(7) In the exercises below, compute the given integral. Use differentiation to justify your answers.
(a) $\int 3 x^{2}\left(x^{3}+2\right) d x$
(b) $\int x^{3} \sqrt{x^{4}+3} d x$
(c) $\int_{-1}^{1} \frac{x+1 / 2}{\left(x^{2}+x+1\right)^{5}} d x$
(d) $\int \frac{1}{x^{2}} e^{2 / x} d x$
(e) $\int_{1}^{4} \frac{1}{\sqrt{x}(1+\sqrt{x})^{3}} d x$
(8) $\int x e^{2 x} d x$ (Hint: use integration by parts)
(9) $\int\left(x^{2}+2 x+3\right) e^{x} d x$ (Hint: use integration by parts)

