Week 1 - Worksheet - MTH 305 (Spring 2017)

(1) Determine direct and recursive formulas for the sequences whose first few terms coincide with the given ones:
(a) $5,14,23,32,41, \ldots$
(b) $3, \frac{7}{2}, 4, \frac{9}{2}, 5, \ldots$
(c) $-\frac{21}{4},-\frac{11}{2},-\frac{23}{4},-6,-\frac{25}{4}, \ldots$
(d) $\frac{e}{2}, 0,-\frac{e}{2},-e,-\frac{3 e}{2}, \ldots$
(e) $3,12,48,192,768, \ldots$
(f) $-13,26,-52,104, \ldots$
(g) $1,2,6,15,31, \ldots$ (only provide a recursive formula)
(h) $0,1,2,5,12,29, \ldots$ (only provide a recursive formula)
(2) For each of the following, determine whether or not they converge. If they converge, what is the limit? Provide some algebraic justification.
(a) $\left\{\frac{3 n+1}{7 n-4}\right\}_{n \in \mathbb{N}}$
(b) $\left\{\sin \left(\frac{n \pi}{4}\right)\right\}_{n \in \mathbb{N}}$
(c) $\left\{\left(1+\frac{1}{n}\right)^{2}\right\}_{n \in \mathbb{N}}$
(d) $\left\{(-1)^{n} n\right\}_{n \in \mathbb{N}}$
(e) $\left\{\sqrt{n^{2}+1}-n\right\}_{n \in \mathbb{N}}$
(f) $\left\{\frac{n}{n+1}\right\}_{n \in \mathbb{N}}$
(g) $\left\{3+\frac{(-1)^{n} 2}{n}\right\}_{n \in \mathbb{N}}$
(h) $\left\{\frac{n^{2}-2 n+1}{n-1}\right\}_{n \in \mathbb{N}}$
(3) Determine if the following sequences are bounded. Briefly justify your answers.
(a) $\{2 n\}_{n \in \mathbb{N}}$
(b) $\left\{1+(-1)^{n}(2 n-1)\right\}_{n \in \mathbb{N}}$
(c) $\left\{\frac{n}{n+3}\right\}_{n \in \mathbb{N}}$
(4) Let S be a positive real number and consider the recursive definition of the sequence,

Choose x_{0} to be a positive real number, and let

$$
x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{S}{x_{n}}\right) .
$$

(a) Make and fill out a table with columns n and x_{n} for $n=1,2, \ldots, 5$. (try $S=4$ and $S=9$, although any positive number S will work)
(b) Can you guess the value of $L=\lim _{n \rightarrow \infty} x_{n}$?
(c) Repeat your experiment with a different first term, x_{0}. What effect does this have on the sequence?
(d) Can you comment on how "fast" the sequence approaches L ?
(5) Write out a careful proof to justify that

$$
\lim _{n \rightarrow \infty} \frac{2 n-3}{3 n+7}=\frac{2}{3}
$$

